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1. Introduction

In preceding note we learned that the most general renormalizable field theory equiped

with N = 1 susy can be expressed fully in terms of chiral superfield Φ subjected to the

constraint Dα̇Φ = 0, its conjugation Φ†, and the vector superfield V satisfying V † = V .

The Lagrangian of this theory can be written as

L = 2Re

[
τ

16πik

∫
d2θ trWαWα

]
+

∫
d2θd2θ̄Φ†e2V Φ

+ 2Re

[ ∫
d2θ

(
λΦ +

m

2
Φ2 +

g

3
Φ3
)]
,

(1)
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where

τ =
θYM

2π
+

4πi

g2
(2)

is the generalized gauge coupling, k is the normalization factor from tr (T aT b) = kδab

with T a’s being generators of gauge group.

However, we are also interested in nonrenormalizable theories. For instance, when

we are concerned with low energy dynamics of the theory, the most powerful approach

is to write down the most general Lagrangian compatible with the symmetry of the

theory, including both renormalizable and nonrenormalizable terms. Such Lagrangian

can be obtained from a fundamental renormalizable theory by integrating out high energy

modes. However, this is usually very hard to do in practice, unless the theory is weakly

coupled along the whole energy scale under consideration. In particular, if the low energy

dynamics is strongly coupled and nonperturbative from the viewpoint of the original

theory, the effective action method will be almost unique, as an analytic approach.

2. Effective Action in Perturbation Theory

Now we are going to study the effective action of N = 1 theories from the viewpoint of

holomorphy. It turns out that the celebrated non-renormalization theorem can be derived

intuitively in the context of effective actions without invoking supergraph techniques.

It should be clarified at the beginning that the effective action we are going to study

in this section is in the sense of Wilson’s approach to renormalization group. That is, the

effective action, which depends on a characteristic energy scale E, is obtained from the

underlying ultra-violet theory defined at a cut-off scale Λc, by integrating out the modes

with an energy shell between E and Λc. This is conventionally called the Wilsonian

effective action in literature, and is in general different from another “effective action”,

the generating functional of all 1-particle-irreducible (1PI) Green’s functions, which will

be referred to as 1PI effective action. By definition, the 1PI effective action is obtained

by integrating out all modes below the cut-off scale down to zero energy. As was pointed

out in [3], the distinction between these two types of effective actions is crucial when the

theory contains interacting massless modes, in which case the 1PI effective action would

suffer from IR ambiguities and lead to the so-called holomorphic anomalies. On the

contrary, since the Wilsonian effective action involves the momentum within an energy

shell bounded from above and below, so it does not have IR problem even when there

are massless modes in the theory.

2.1 Non-renormalization theorem

Let’s consider a general N = 1 theory including chiral superfields and vector super-

fields. Since we are doing perturbation theory, the θYM-angle can be dropped. We assign
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standard kinetic terms for chiral supefield Φ and vector superfield V , and the remaining

terms can be generally parameterized by two functions A [Φ,Φ†, V ] and B(Φ,Wα), as

follows,

L =
τ

8πik
Re

∫
d2θ trWαWα +

∫
d2θd2θ̄Φ†e2V Φ

+

∫
d2θd2θ̄A [Φ,Φ†, V ] + 2Re

∫
d2θB(Φ,Wα).

(3)

Here we use square bracket for A [Φ,Φ†, V ] to show that A is a function of indicated

superfiels and their (super)derivatives, while B(Φ,Wα) can only depend on Φ and Wα,

but not on their conjugates or derivatives. The superpotential then is given by W(Φ) =

B(Φ, 0).

Now we are going to study the scale dependence of this theory. Then, the Lagrangian

above should be interpreted as the definition of the theory at a UV scale Λc which we will

refer to as cut-off scale. What we want is the behavior of this theory at the energy scale E

below the cut-off scale Λc. To achieve this, the standard procedure of Wilson’s approach

is to integrate out all modes between E and Λc. The resulted Lagrangian is generally

different from the original one (3). A remarkable result we will prove in the following

is that, to any finite order in perturbation theory, the Wilsonian effective Lagrangian at

energy scale E is given by,

LE =
τE

8πik
Re

∫
d2θ trWαWα +

∫
d2θd2θ̄Φ†e2V Φ

+

∫
d2θd2θ̄AE [Φ,Φ†, V ] + 2Re

∫
d2θB(Φ,Wα).

(4)

That is, the kinetic term of vector superfield receive 1-loop corrections only, with the

gauge coupling τ replaced by the corresponding 1-loop running coupling τE . We know

from ordinary field theory that the gauge coupling β function of a non-Abelian theory with

chiral (or Majorana) fermions in representation rf and complex scalars in representation

rs is given by,

β(g) = − g3

(4π)2

[
11

3
C2(Ad)− 2

3
C(rf )− 1

3
C(rs)

]
, (5)

where C2(Ad) and C(r) are defined through facdf bcd = C2(Ad)δab and tr (T ar T
b
r ) =

C(r)δab with T ar the matrix of representation r of corresponding gauge generator. In our

current theory, let the chiral superfield Φ be in representation r, then we have rs = r

and rf = r ⊕ Ad where Ad denotes adjoint representation. Note further that C2(Ad) =

C(Ad), so we have β(g) = − 1
(4π)2 g

3
[
3C(Ad) − C(r)

]
. Then it can be easily solved that

1
g2E

= 1
g2 + 1

8π2 [3C2(Ad) − C(r)] log(E/Λc). Meanwhile, there is no 1-loop correction to

the topological angle θYM. Thus,

τE = τ +
i
[
3C(Ad)− C(r)

]
2π

log
E

Λc
. (6)
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Furthermore, the B-function in original Lagrangian (3) does not receive any quantum

corrections in perturbation theory. In particular, this implies that the superpotential

W(Φ) = B(Φ, 0) is not renormalized. We have proved this result for renormalizable

Lagrangian with supergraph technique, which was originally done in [4]. In what follows,

we will derive this more general result in the context of Wilsonian effective action following

the holomorphy approach of Seiberg [6] and its generalized version [8].

Before getting into the proof, one should be aware that this non-renormalization for

superpotential is subject to the assumption of perturbativity, namely the weak couplings

in the whole range of energies from E to Λc. When there is no non-Abelian gauge fields,

this must be true if the theory is perturbative at Λc, since we know all renormalizable

theories without non-Abelian gauge fields are IR free, while nonrenormalizable couplings

are irrelevant at IR. So the scale E of effective action can be put arbitrarily low. This is

also the case even when non-Abelian gauge fields are prensent, but with enough number

of matter fields to alter the sign of beta function, or, with a Higgs mechanism to break

the non-Abelian gauge symmetry to an IR free theory, as the case of electroweak theory.

However, when the non-Abelian gauge symmetry is unbroken, the theory would become

strongly coupled at and below an energy Λg. In this case the effective action can be

applied only when Λg � E < Λc.

The key observation of Seiberg’s proof is that one can treat couplings of cut-off theory

in (3) as background values of some fields. A prototype of such treatment is the string

coupling in string theory, which can actually be identified as the vacuum expectation

value of dilaton field. The point of this treatment in current theory is that, since we are

only concerned with physics below Λc, we are free to design a new theory at energies far

above Λc as long as it can reproduce (3) at Λc. In this way, the new theory we designed

should lead to the same RG behavior as (3). Since the perturbation theory already holds

at and below Λc, the RG flow should not have exotic behavior, thus the argument above

is justified. With this in mind, we promote the gauge coupling τ to a chiral superfield T ,

various coefficients gi in A to vector superfields Gi, and various coefficients λi in B to

chiral superfields Li. Then, the Lagrangian (3) of cut-off theory can be rewritten as,

L =
1

8πik
Re

∫
d2θ T trWαWα +

∫
d2θd2θ̄Φ†e2V Φ

+

∫
d2θd2θ̄AE [Φ,Φ†, V ;Gi] + 2Re

∫
d2θB(Φ,Wα;Li).

(7)

Clearly we can design the theory such that T and Li are frozen at cut-off scale Λc with

values T = τ and Li = λi, then the original theory (3) is naturally recovered.

Now, after integrating out modes from cut-off scale Λc down to E, the resulted effective
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Lagrangian LE can be generally written as,

LE =
1

8πik
Re

∫
d2θ T trWαWα +

∫
d2θd2θ̄Φ†e2V Φ

+

∫
d2θd2θ̄AE [Φ,Φ†, V ;T, T †, Li, L

†
i , Gi]

+ 2Re

∫
d2θBE(Φ,Wα, T ;Li, Gi).

(8)

To constrain the effective lagrangian (8), we study various symmetries of the cut-off

theory. Firstly, it appears odd that BE can depend on vector superfields Gi. We spell out

this dependence explicitly because BE may depend on some chiral superfields generated

from Li. In fact, vector superfields Gi are always associated with a generalized gauge

transformation, Gi → Gi + i(Λ − Λ†) with Λ a chiral superfield that serves as gauge

parameter. We see that a shift of gauge parameter Λ → Λ + ζ with ζ a real number

leaves Gi invariant, so the original theory has this translation symmetry. If the symmetry

remains when quantum correction enters, then it would prevent chiral superfield Λ from

appearing in B and thus BE cannot depend on Gi. On the contrary, if this translation

symmetry is broken, then BE can feel the existence of A through its dependence on Λ.

In fact, this translation symmetry is only broken nonperturbatively, therefore BE can

have no Gi-dependence in perturbation theory, which we are assuming in the current

proof. Then we have BE = BE(Φ,Wα, T ;Li).

Additionally, there are two important symmetries in cut-off theory (7). One is a

U(1) R-symmetry, the other is the translation symmetry of T , T → T + ξ. The latter

translation is really a symmetry because the original Lagrangian (7) transforms into a

spacetime total derivative. Therefore, this symmetry requires that T cannot appear in

effective Lagrangian (8) except in its original form. So now we have,

BE(Φ,Wα, T ;Li) = T trWαWαBE1 + BE2(Φ,Wα;Li), (9)

where BE1 is a function of scale E only.

To make use of R-symmetry, we perform a diagrammatic analysis. Consider an or-

dinary Feynman diagram (not super-diagram) containing EV external “gaugino” lines,

IV internal V -lines, and Xm pure gauge vertices with m ≥ 3 V -lines, Ymr vertices with

m ≥ r V -lines from terms with r factors of Wα in B(Φ,W ), as well as Zm vertices with

m ≥ 1 V -lines from Φ†e2V Φ. Then we have the following relation,

EV + 2IV =
∑
m≥3

mXm +
∑
r

∑
m≥r

mYmr +
∑
m

mZm. (10)

Now let’s see the R-charge of this diagram. We require Φ, V , and T to be R-neutral.

Then, since θα and θ̄α̇ have R-charge +1 and −1, respectively (thus d2θ has R-charge

−2), we see that Wα has R-charge +1 and B has R-charge +2. Thus Lr has R-charge
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2 − r, where r is the power of Wα in Lr-term. The diagram has EV external gaugino

lines, it must contribute to a term with EV factors of Wα in BE and the corresponding

coefficient has R-charge (2−EV ), since each Wα contains exactly one gaugino, and this

is the reason we require the external V -lines to be gaugino lines rather than gauge boson

lines. On the other hand, the R-charge of the coefficient resulted from the diagram above

is totally contributed by Ymr vertices, which has R-charge (2− r). Therefore,∑
r

∑
m≥r

(2− r)Ymr = 2− EV . (11)

Then, we can use the two equalities above to find the number of factors of τ in the given

diagram to be,∑
m≥3

Xm − IV = 1− 1

2

[ ∑
m≥3

(m− 2)Xm +
∑
r

∑
m≥r

(2− r +m)Ymr +
∑
m

mZm

]
. (12)

The quantity in the square bracket is semi-positive definite, thus the number of factors of

τ is limited. When it contains 1 factors of τ , the possible numbers of vertices can be a)

X3 = 2 and all others vanish; b) X4 = 1 and all others vanish; c) Ym=r,r = 1 and all others

vanish; d) Z2 = 1 and all others vanish; e)X3 = 1, Z1 = 1, and all others vanish. Now, the

cases a) and b) are just 1-loop gauge corrections to WαWα term, case d) is just the matter

corrections to WαWα term. These three cases combine to give 1-loop running gauge

coupling τE (6). Furthermore, case c) gives tree diagrams that reproduces corresponding

terms in B(Φ,Wα), and finally, case e) is not 1PI and thus does not contribute. It can

also be seen from the equality above that the quantity in the square bracket vanishes only

when Xm, Ymr, Zm = 0, which leaves nothing. Therefore, we conclude that BE cannot

depend on τ , thus BE1 = 0 and BE2 = B(Φ,Wα) + 1
16πik (τE − τ) trWαWα, namely the

tree level result B(Φ,Wα), plus the one-loop correction to the gauge coupling τ , and this

finishes the proof.

Wess-Zumino Superpotential. Although the theorem proved above can be directly

applied to Wess-Zumino model with simple superpotentialW(Φ) = mΦ2 + gΦ3, the non-

renormalization of this superpotential can be proved with holomorphy argument more

directly, as described in Seiberg’s original paper [6]. In this case, we have a U(1)⊗U(1)R
symmetry in tree level superpotential, by assign Φ, m, and g the U(1) ⊗ U(1)R-charge

(1, 1), (−2, 0), and (−3,−1), respectively. Then, assuming this symmetry is not broken

at any finite order in perturbation theory, the superpotential at energy scale E ≤ Λc must

take the form WE = mΦ2B(gΦ/m), where B is an arbitrary function of the indicated

combination. Now expand the function B as a Laurent series, B(t) =
∑
bnt

n, and

consider the weak coupling limit. The superpotential should not be singular when λ→ 0

and µ → 0 requires that n ≥ 0 and n ≤ 1, thus B = b0 + b1t. The coefficient b0 and b1
can be determined to be 1 by requiring WE → W when m, g → 0 altogether. Thus we

conclude that WE =W.
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3. Beta Function of Non-Abelian Gauge Theory

3.1 Instanton calculus and NSVZ β function

In this subsection we introduces the basics of instanton solution in supersymmetric

gauge theory. For simplicity we take N = 1 super Yang-Mills theory with gauge group

SU(2) as an example.

It is well known that instanton is a classical solution of gauge field in 4 dimensional

Euclidean space satisfying the self-dual condition. Let the field strength be Fmn. Then

the self-dual condition takes the form Fmn = ±F̃mn with F̃mn = 1
2 εmnpqFpq. The

simplest nontrivial solution, the BPST instanton, is given by,

Am ∝ −
σ̄mn(x− x0)n
(x− x0)2 + ρ2

, (13)

where the symbol σ̄mn in Euclidean space is self-dual, x0 and ρ mark the position and

size of the instanton. It can be checked that this solution has winding number k = +1

where k = − 1
16π2

∫
d4xFmnF̃mn.

However, we would encounter a problem if we try to generalize this solution to N = 1

supersymmetric theory directly. The problem arises from the fact that the Euclidean

space does not admit a real spinor representation, while the N = 1 supersymmetry in

Minkowski spacetime is generated by a pair of Weyl spinor Qα and Qα̇, which are complex

conjugates of each other, and thus do form a real Majorana spinor. In Euclidean space,

the left and right spinors are not related by complex conjugate, thus we simply have no

N = 1 supersymmetry in 4 dimensional Euclidean space which can be regarded as direct

generalization of Minkowski one.

The solution to this problem lies in the fact that whenever the physical effects of

instanton are concerned with, we can always treat the solution as a Wick rotation from

Minkowski space. In pure bosonic theory, it is possible to rotate both coordinates and

fields, so that the results in Euclidean space can be put into a real action. On the con-

trary, the fermion kinetic term in Minkowski space, when rotated to Euclidean space,

would ceases to be real. Therefore, we may adopt the prescription that only the space-

time coordinates are wick rotated, while the fields are left intact. In this way, we can

reformulate the physics of instanton in a consistent way.

With Minkowski signature, the self-dual condition becomes F̃mn = ±iFmn, and we

will all the condition with positive and negative signs the selfdual and antiselfdual, respec-

tively. Then, with our convention, we find that σmn is antiselfdual and σ̄mn is selfdual.

Thus, we can directly write down a solution in Minkowski space which is similar to BPST

instanton in Euclidean space, as follows,

Am = − 2iσ̄mn(x− x0)n

(x− x0)2 + ρ2
, (14)
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while the field strength is given by,

Fmn = ∂mAn − ∂nAm + i[Am, An] =
4iσ̄mnρ

2

[(x− x0)2 + ρ2]2
. (15)

3.2 Effective action: Wilsonian vs. 1PI

3.3 Rescaling anomaly of vector superfield

4. Nonperturbative Corrections to Effective Action

In last section we learned that the superpotential of an N = 1 susy theory receives

no quantum correction at any finite order in perturbation theory, while the gauge cou-

pling are renormalized only at 1-loop. Now we are going to study the nonperturbative

corrections to this results. This is important because non-Abelian gauge theories usually

exhibit asymptotic freedom in the UV, which means that the theory may become strongly

coupled at IR, in which case the perturbation theory fail to work.

References

[1] J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Uiversity Press,

1983.

[2] P. C. Argyres, An Introduction to Global Supersymmetry, 2001, unpublished. [Online

version]

[3] M. A. Shifman and A. I. Vainshtein, “Solutions of the Anomaly Puzzle in SUSY

Gauge Theories and the Wilson Operator Expansion”, Nucl. Phys. B 277 (1986)

456.
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