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Abstract

In this note we study some general properties of renormalization group (RG) flow and the

conformal symmetry of field theories in 2D spacetime. We first present the Zamolodchikov’s

c-theorem and its proof, which indicates the irreversibility of the RG flow. Then we explain

the theorem with the spectral representation to reveal the physical meaning of the c-function.

Finally we apply Zamolodchikov’s arguments to show that global scale symmetry in 2D implies

local conformal symmetry under broad conditions.

1 Introduction

2 Renormalization Group Flows of 2D Unitary QFT

2.1 Zamolodchikov’s 2D c -Theorem

The basic settings of the c-theorem is a general field theory in 2D Euclidean spacetime, described

by the action,

S =

∫
d2xL(g,Λ, x), (1)

where g = (g1, g2, · · · ) is a collection of dimensionless coupling constants and Λ is the UV cut-off

scale. The coupling parameters coordinatize a space of theories Q, in the sense that each point in

Q specifies a field theory. The corresponding coordinate basis of Q is given by a set of operators

Φi ≡ ∂L(g,Λ, x)/∂gi. We assume that there exists a one-parameter transformation Rt : Q → Q

generated by a vector field βi(g) as a section of tangent bundle TQ. The components of the vector

field are called β functions. By definition, we have

dgi = βi(g)dt. (2)

The so-called c-theorem needs the following assumptions. 1) The presence of Galilean symme-

try. In particular, the existence of translational symmetry implies the conservation of the stress

tensor Tµν , which is chosen here to be symmetric. We further denote its trace by Θ ≡ Tµµ. 2)

“Renormalizability”. In the present context, this means that the trace of the stress tensor Θ can

be expressed linearly in terms of the basis operators Φi, with the coefficients being exactly the β

functions βi(g), namely,

Θ = βi(g)Φi. (3)
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3) Positivity. That is, 〈ΦiΦj〉 is a positive definite matrix, and can serve as a metric in Q.

Then, under these assumptions, we have the following:

Theorem. 1) There exists a function c : Q → R with c(g) ≥ 0, such that

d

dt
c ≡ βi(g)

∂

∂gi
c(g) ≤ 0, (4)

where the equality holds if and only if g = g∗, with g∗ a fixed point of the RG flow, namely,

βi(g∗) = 0. 2) The (critical) fixed point is the stationary point of c(g), namely,

βi(g) = 0 ⇒ ∂c

∂gi

∣∣∣
gi=gi∗

= 0. (5)

3) At the critical fixed point, the system has local conformal symmetry characterized by the

Virasoro algebra with central charge c̃(g∗). The central charges c̃(g∗) can be different for different

fixed points g∗. We have, c(g∗) = c̃(g∗).

To prove this theorem, we go to the complex coordinates (z, z̄) with z = x1 + ix2. Then the

stress tensor has components

T ≡ Tzz = 1
4 (T11 − T22 − 2iT12), Θ = 4Tzz̄ = 4Tz̄z = T11 + T22, Tz̄z̄ = T ∗, (6)

and the conservation equation ∂µTµν = 0 reads

0 = ∂̄T + 1
4 ∂Θ. (7)

Now we consider the two point correlation functions of stress tensor 〈Tµν(z)Tρσ(0)〉. There are

three independent components, which can be put into the following form:

〈T (z)T (0)〉 =
F (zz̄Λ2)

z4
, 〈Θ(z)T (0)〉 =

G(zz̄Λ2)

z3z̄
, 〈Θ(z)Θ(0)〉 =

H(zz̄Λ2)

z2z̄2
, (8)

where F (ξ), G(ξ) and H(ξ) are three scalar function of the dimensionless quantity ξ = zz̄Λ2 with

conformal weight zero. The form of these parameterization can be determined by the conformal

weight of the correlators. For instance, without vanishing anomalous dimension, T has conformal

weight1 (h, h̄) = (2, 0), therefore the correlator 〈TT 〉 must be proportional to z−4 with coefficient

a conformal scalar F . Note further that Θ has conformal weight (1, 1), then the correlators 〈ΘT 〉
and 〈ΘΘ〉 can also be parameterized in the same way.

Then, the conservation of the stress tensor (7) implies that

0 = ∂̄〈T (z)T (0)〉+ 1
4 ∂〈T (z)Θ(0)〉, (9a)

0 = ∂̄〈T (z)Θ(0)〉+ 1
4 ∂〈Θ(z)Θ(0)〉. (9b)

These equations can be rewritten into the following form by using (8),

0 = ξF ′ + 1
4 (ξG′ − 3G), (10a)

0 = (ξG′ −G) + 1
4 (ξH ′ − 2H). (10b)

1To check this statement, note that T transforms as T → e2tT and T → e2iθT under the scale transformation

and rotation respectively. That is it has scaling dimension d = 2 and spin s = 2. Then the conformal weight is given

by (h, h̄) =
(

1
2

(d + s), 1
2

(d− s)
)

= (2, 0).
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Eliminating G from these two equations, we get

− 3
8 H = ξ

(
F ′ − 1

2 G
′ − 3

16H
′) = zz̄

∂

∂(zz̄)

[
F (zz̄Λ2)− 1

2 G(zz̄Λ2)− 3
16H(zz̄Λ2)

]
. (11)

Now we define a function C in the space of theory Q by

C = 2F −G− 3
8 H. (12)

Then (11) says that
∂C

∂ log |z|2
= − 3

4
H. (13)

Now, along the RG flow parameterized by t, the renormalization point |z|2 scales as e2t|z|2. Thus

we have dC/dt = − 3
2 H. On the other hand, we see from (8) that H = z2z̄2〈Θ(z)Θ(0)〉 =

|z|4βiβj〈Φi(z)Φj(0)〉 ≥ 0 by unitarity. Thus we have found a function C which does not increase

along any RG flow. Now that the metrix Gij in Q is positive definite, thus H = 0 if and only if

βi(g) = 0, namely, the equality holds only at fixed points. In this case the trace Θ vanishes and

C = 2F . In addition, C/2 is now the coefficient of the z−4 in 〈T (z)T (0)〉 and thus coincides with

the central charge of the CFT at this point.

2.2 Spectral Representation

In this section we will try to understand the physical meaning of the c function defined in

the last section. It will be shown that this function is a measure of the density of (massless)

degree of freedoms. To achieve this goal, we will use the spectral representation for two-point

correlator of the stress tensor [3]. Thus we firstly recall some basic ingredients of the spectral

representation, with scalar field as a simple example. Let φ be a scalar field interacting with some

other scalar fields (which can be different from φ) in general n spacetime dimensions. Then the

spectral representation for the two-point correlator 〈φ(x)φ(0)〉 is obtained by inserting a “1” made

by a summation over complete basis of the Hilbert space, namely, we write

1 =

∫
dµ2 Pµ; Pµ ≡

∫
dn−1p

(2π)n−1

1

2
√
p2 + µ2

|p, µ〉〈p, µ|, (14)

where |p, µ〉 is the one-particle eigenstate of the momentum operator Pµ with mass spatial mo-

mentum p and mass µ, and Pµ is an operator projecting a state to the one-particle state with

mass µ. Inserting this identity into the correlator 〈φ(x)φ(0)〉, we have

〈φ(x)φ(0)〉 =

∫
dµ2

∫
dn−1p

(2π)n−1

1

2
√

p2 + µ2
〈φ(x)|p, µ〉〈p, µ|φ(0)〉, (15)

where |φ(0)〉 is the result of acting φ(0) on the interaction vacuum |0, int〉. Now we use the Poincaré

symmetry to recast 〈φ(x)|p, µ〉 = eip·x〈φ(0)|0, µ〉. Then we get

〈φ(x)φ(0)〉 =

∫
dµ2

∫
dnp

(2π)n
eip·x

p2 +m2

∣∣〈0, µ|φ(0)〉
∣∣2 ≡ ∫ dµ2 ρ(µ2)G(x, µ), (16)

where G(x, µ) is the scalar’s Feynman propagator with mass µ, and ρ(µ2) =
∣∣〈0, µ|φ(0)〉

∣∣2 is called

the spectral density. The unitarity of the theory guarantees that ρ(µ2) is positive definite.
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Now we consider the two-point correlator of the stress tensor in 2 dimensions. Repeat the

arguments above, and note that the Lorentz structure of the amplitude 〈Tµν |p, µ〉 = (p2gµν −
pµpν)C(µ2)eip·x with C(µ2) a scalar function. This structure is fixed by the conservation of the

stress tensor. Then the spectral representation of the two-point correlator is given by

〈Tµν(x)Tρσ(0)〉 =
1

12π

∫ ∞
0

dµ c(µ; g,Λ)(gµν∂
2 − ∂µ∂ν)(gρσ∂

2 − ∂ρ∂σ)G(x, µ2). (17)

Here we have normalized the spectral density function c by a factor of 1/12π and spelled out

explicitly its dependence on the coupling g and mass scale Λ. Again, c(µ; g,Λ) is positive definite

by unitarity. Furthermore, it is easy to see that the mass dimension of the spectral density is −1,

and the combination dµ c(µ) is a dimensionless measure of the degrees of freedom. Then, in a

scale invariant theory in which there is no mass scale, the form of c(µ) is completed fixed to be

c(µ) = c0δ(µ). In this case, consider the correlator 〈ΘΘ〉:

〈Θ(x)Θ(0)〉 =
1

12π

∫ ∞
0

dµ c0δ(µ)(∂µ∂
µ)2G(x, µ) = − 1

12π
c0∂µ∂

µδ(2)(x). (18)

As the theory flows away from its UV or IR fixed point, the spectral density develops an additional

term besides a delta function at zero, namely

c(µ) = c0δ(µ) + c1(µ,Λ), (19)

and the support of c1 is away from zero. Now we go back to the complex coordinates and get

〈T (z)T (0)〉 →


1

8π2z4

∫ ∞
0

dµc(µ), z → 0

1

8π2z4
lim
ε→0

∫ ε

0
dµc(µ), z →∞

(20)

Let’s verify the case z → 0. Note that the propagator G(x, µ2) can be evaluated explicitly to be

G(x, µ2) =
1

2π
K0(µx), (21)

by deforming the integral along a counter lying in the upper half of the p-plane. In complex

coordinates, this becomes G(|z|, µ) = K0(µ|z|)/2π. As z → 0, K0(µ|z|) → − log(µ|z|) + O(|z|0).

Therefore we have ∂4
zG(|z|, µ)→ 3z−4/2π. Then, (20) implies that when the theory approach UV

(z → 0) or IR (z →∞) CFTs, we get the central charges:

cUV =

∫ ∞
0

dµ c(µ), cIR = lim
ε→0

∫ ε

0
dµ c(µ). (22)

These two numbers are related to each other by

cUV = cIR +

∫ ∞
0

dµ c1(µ). (23)

Then, from the positivity of the theory, we see that cUV ≥ cIR.

The argument above shows that the spectral density c(µ) coincides with the UV or IR central

charges as the theory approaching UV or IR CFT, a property also shared by Zamolodchikov’s

C function defined in (12). However, we note that Zamolodchikov’s C function is defined in the
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parameter space, namely, is a function of couplings gi, while the spectral density is defined for each

theory along a single RG trajectory. Therefore, to find the relation between these two functions,

we “smear” the spectral density over the RG flow,

c(g(Λ)) =

∫
dµ c(µ)f(µ) =

∫
dµ c1(µ,Λ)f(µ) + cIR, (24)

with f(µ) a smearing function being positive definite, monotonically decreasing with µ, and the

boundary condition that f(0) = 1, f(µ) decays exponentially as µ→∞.

2.3 Examples

In this section we consider two examples [3, 4] to illustrate the ideas outlined above.

2.3.1 RG Flow between UV and IR Minimal Models

As a first explicit example of 2D RG flow linking two CFTs at UV and IR, consider the case

in which UV CFT is a unitary minimal model [5] lying in the classification of Friedan, Qiu and

Shenker [6], with central charge c(m) = 1 − 6/m(m + 1) and m a large integer. We perturb this

CFT by a slightly relevant operator Φ = Φ1,3 with conformal weight2 h1,3 = 1− 2/(m+ 2). Then

its scaling dimension is ∆ = 2h ≡ 2 − y, with 0 < y � 1. Schematically, we can write down the

action of this system as

S = SUV − λ0

∫
d2xΦ0(x), (25)

where SUV is the action for the UV CFT, λ0 is a (bare) coupling with dimension [λ0] = y and

Φ0 the bare operator with conformal weight h1,3 at UV, We note that since the UV CFT is not a

Gaussian fixed point of the theory, thus the action SUV may not correspond to the integral of an

Lagrangian.

We will show in the following that the nontrivial RG flow generated by the relevant perturbation

Φ0 drives the theory to an IR CFT, which is again a minimal model, but with central charge

c(m − 1). The basic strategy is to perform a standard calculation for the correlator 〈ΦΦ〉 within

the perturbation theory, with regularization, renormalization and RG-improvement.

To the first order in perturbation of coupling λ0, we have

〈Φ0(x)Φ0(0)〉 =

〈
Φ0(x)Φ0(0) exp

(
λ0

∫
d2x′Φ0(x′)

)〉
UV〈

exp
(
λ0

∫
d2x′Φ0(x′)

)〉
UV

= 〈Φ0(x)Φ0(0)〉UV + λ0

∫
d2x′ 〈Φ0(x)Φ0(0)Φ0(x′)〉UV +O(λ2

0), (26)

where the subscript UV indicates the corresponding correlator should be evaluated with the UV

CFT. The two-point function is simply given by

〈Φ0(x)Φ0(0)〉UV =
1

|x|4h
, (27)

2Recall that the conformal weight corresponding to zeros of Kac determinant is given by

hr,s(m) =
[(m + 1)r −ms]2 − 1

4m(m + 1)

for unitary minimal models with central charge c(m).
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where a possible coefficient can be absorbed into the normalization of Φ0. For three-point function,

we have ∫
d2x′ 〈Φ0(x)Φ0(0)Φ0(x′)〉UV =

∫
d2x′

b

|x|2h|x′|2h|x− x′|2h

=

(
Γ(1− y)Γ2(1 + y/2)

Γ2(1− y/2)Γ(1 + y)

)
4πb

y

|x′|y

|x′|4h
, (28)

where b is the structure constant. We will use A = A(y) to denote the quantity in the parenthesis

in the last line. As long as y is small, it is straightforward to see that A(y) = 1 +O(y3). Then we

get

〈Φ0(x)Φ0(0)〉 =
1

|x|4h

(
1 + λ0A

4πb

y
|x|y +O(λ2

0)

)
. (29)

We see that no regularization is needed since the result is finite within the first order of perturbation

as long as 0 < y � 1. But in order to study the marginal case with y = 0, renormalization

is necessary because the result above is divergent as y → 0. Therefore, our renormalization

condition will be such that the renormalized correlator 〈ΦΦ〉 remains finite as y → 0. We denote

the renormalized coupling by λ(µ) with µ the renormalization scale, and define a corresponding

dimensionless coupling g(µ) by g(µ) = µ−yλ(µ). At the UV cut-off Λ the renormalized coupling

should coincide with the bare one, namely we have g(Λ) = Λ−yλ0. The dependence of g(µ) on µ

is of course dictated by the β function, µdg(µ)/dµ = β(g), while the β function is in turn given

by the coefficient of the trace of the stress tensor Θ, linearly expanded in terms of field operators,

Θ = β(g)Φ(x, g). We also define the renormalized operator Φ(x, g) = Φ0(x)/
√
Z(g), with the

wave-function renormalization coefficient to be determined.

A number of renormalization schemes do the job, and we will (purely for convenience) pick up

the following one:

〈Φ(x, g)Φ(0, g)〉
∣∣
|x|=µ−1 ≡ µ4. (30)

Then it is straightforward to find that

√
Z = µ−y

(
1 + λ0A

2πb

y
µ−y +O(λ2

0)

)
. (31)

On the other hand, for trace of the bare stress tensor, we also have a similar relation, Θ0 = −yλ0Φ0.

We also note that Θ receive no wave function renormalization since it is the trace of the conserved

current corresponding to the translational symmetry, thus we should have Θ = Θ0. Then, together

with the renormalized expression Θ = β(g)Φ(x, g) and
√
Z in (31), we find

β(g(λ0)) = −yλ0

√
Z(g) = −yλ0µ

−y − 2πbA(λ0µ
−y)2 +O(λ3

0). (32)

From this we solve the coupling g to be

g = λ0µ
−y
(

1 + λ0A
πb

y
µ−y +O(λ2

0)

)
. (33)

Conversely, λ0 can also be solved as an expression in g order by order, λ0 = gµy
(
1 − gAπby−1 +

O(g2)
)
. Inserting this expression back to the β function (32) as well as the renormalized correlator,

we find

β(g) = −yg − πbAg2 +O(g2), (34)
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and

〈Φ(x, g)Φ(0, g)〉 =
µ4

|µx|4h

(
1 + 4πbAg

|µx|y − 1

y
+O(g2)

)
. (35)

Now it is clear that this renormalized correlator is finite as y → 0, which represents a UV CFT

with c = 1 perturbed by a marginal operator. However, we observe that (35) does not exhibit

power law behavior at IR CFT, namely when g approaching its IR fixed point g∗ = −y/πb. The

correct power law can be got after a suitable resummation to all orders in coupling g. This can be

achieved by solving the Callan-Symanzik equation. In our case, this equation reads(
|x| ∂
∂|x|

+ β(g)
∂

∂g
+ 4h(g)

)
G2(x, g) = 0. (36)

The equation can be explicitly solved by the method of characteristics, with the solution

G2(x, g) = 〈Φ(x, g)Φ(0, g)〉 exp

(∫ ḡ(µ)

dg′
4h(g′)

β(g′)

)
. (37)

2.3.2 Free Massive Theories

Next we consider an even more trivial example, namely a theory of free massive particle.

Though trivial as it seems to be, this example provides us an explicit spectral representation, and

allows us to trace the variation of the spectral density function along the RG flow.

Intuitively, the theory in the UV is a free CFT at trivial Gaussian fixed point, in which case

the particle’s mass can be ignored. When the theory flows to IR, nothing left. If this looks too odd

to someone, we can also include any free massless field into the theory with trivial RG property,

to ensure that there are something left in the IR limit. But we will never write out this massless

field explicitly in the following.

The spectral density function can be evaluated explicitly in this case. For massive Majorana

fermion, it is given by

c1(µ,m) =
6m2

µ3

√
1− 4m2

µ2
θ(µ− 2m), (38)

and for massive boson, the spectral density is

c1(µ,m) =
24m4

µ5

(
1− 4m2

µ2

)−1/2

θ(µ− 2m). (39)

2.4 Scale, Conformal and Weyl Symmetries in 2D

At last we apply Zamolodchikov’s argument to seek for a relation among different space sym-

metries in 2D [7]. We will consider the rigid scale symmetry in local conformal symmetry flat 2D

space, as well as scale symmetry and Weyl symmetry in curved 2D space. In particular, we will

show that in flat space, rigid scale symmetry of a unitary field theory implies the local conformal

symmetry.

To be definite, we firstly recall the definition of these symmetry transformations. The scale

transformation in flat space is defined to be a transformation on space coordinates, δxµ = εxµ with
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ε a coordinate independent number. The conformal transformation, is given by δxµ = εvµ(x) with

vµ(x) satisfying

∂µvν(x) + ∂νvµ(x) = ηµν∂ · v(x). (40)

In 2D this condition says that ∂ · v(x) spans all harmonic functions of x.

Now, a scale current must be of the from

Sµ(x) = xνTν
µ +Kµ(x), (41)

where the first terms containing the symmetric stress tensor Tµν comes from the transformation

on space coordinate, and the second term Kµ reflect the “inner” transformation of field arise

from the field’s scaling dimension. Thus Kµ is a local operator with no explicit dependence on

space coordinates. Then, the conservation of scale symmetry is amount to say that ∂µS
µ = 0, or

equivalently,

Tµ
µ(x) = −∂µKµ(x). (42)

Thus we see that the necessary and sufficient condition for existence of a conserved scale current

Sµ is that the trace of any symmetric stress tensor can be written as the divergence of a local

operator.

On the other hand, the most general form of the conformal current is given by

Jµ(x) = vν(x)Tν
µ(x) + ∂ · v(x)K ′µ(x) + ∂ν∂ · v(x)Lνµ(x). (43)

Compared with the scale current, an additional term proportional to a local operator Lµν appears,

since the transformation parameter vµ(x) is now allowed to vary with coordinates. Note that no

higher order derivatives of vµ(x) appears, because they are not independent quantities, due to the

harmonic condition ∂2(∂µv
µ(x)) = 0. Then, the conformal symmetry, namely the conservation of

the current jµ, implies that

0 = ∂µj
µ = (∂ · v)

(
Tν

ν + ∂ ·K ′
)

+
[
∂µ(∂ · v)

](
K ′µ + ∂νL

µν
)

+
(
∂µ∂ν(∂ · v)

)
Lµν . (44)

Thus we get two additional conditions, K ′µ = −∂νLµν and Lµν = ηµνL besides the condition for

rigid scale symmetry. Now these three conditions combine into a single condition, T (x) = ∂2L(x).

A stress tensor satisfying this condition can always be made traceless. Thus we conclude that the

system has conformal symmetry, if there exists a symmetric traceless stress tensor.

On the other hand, we see that a theory can be scale invariant but not conformal invariant

only when its trace of stress tensor is the divergence of a local operator Kµ, while this operator is

not a gradient of another local operator L.

3 Towards a 4D a-Theorem

3.1 Cardy’s Conjecture

In our earlier presentation of Zamolodchikov’s proof of 2D c-theorem, the conservation of the

stress tensor play a crucial role, in that it constrains a particular combination of different compo-

nents of two-point correlator 〈Tµν(x)Tρσ(0)〉 to have positive definite derivative along the RG flow.

However, the same argument cannot be applied to 4D QFT directly, roughly because the increase
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of independent components of the correlator 〈Tµν(x)Tρσ(0)〉 is faster than that of conservation law

∂µTµν = 0. More definitely, if we parameterize the correlator in any spacetime dimension n, as

〈Tµν(x)Tρσ(0)〉 =
D

|x|2n+4
xµrνrρrσ +

E

|x|2n+2
(δµνxρxσ + δµνxρxσ)

+
F

|x|2n+2
(δµρxνxσ + δµσxνxρ + δνρxµxσ + δνσxµxρ)

+
G

|x|2n
δµνδρσ +

H

|x|2n
(δµρδνσ + δµσδνρ), (45)

then it can be shown that

d

d|x|
C = −4

n+ 1

n− 1
〈Θ(x)Θ(0)〉 − 2(n− 2)D, (46)

where

C ≡ − 4

n− 1

[
D + 1

2 (d2 + d+ 2)E + (d+ 3)F + 1
2 d(d+ 1)G+ (d+ 1)H

]
. (47)

Therefore we see that the derivative of c-function is not proportional to the positive definite trace

correlator 〈ΘΘ〉 unless n = 2, in which case the c-function is indeed monotonic along the RG flow,

and goes to the corresponding central charges of UV and IR CFTs.

Cardy’s observation is that the central charge appears not only as a coefficient before the

two-point correlator of the stress tensor, but also before the Weyl anomaly. In particular, in

2-dimensional space, the Weyl anomaly due to nonzero space curvature is given by

〈Θ〉 = − c

12
R. (48)

So it is possible that the Weyl anomaly coefficient can serve as a good candidate for the c-function

along the RG flow, as an extension to the central charge. In its original form, Cardy proposed that

a possible candidate of c-function in any even dimensional spacetime to be

C = (−1)n/2an

∫
Sn

dnx
√
g〈Θ〉, (49)

where the coefficient an is a normalization for C. For instance, taking a4 = 60/π2 in 4D gives

C = 1 for a massless real scalar field. The (−1)n/2 is due to the sign of the integral flips as n

increases through even integers.

To understand why the integral over the n-sphere is taken, we take n = 4 as an example. In

this case the Weyl anomaly can be generally parameterized as

〈Θ〉 = αR2 + βRµνR
µν + γRµνρσR

µνρσ + δ�R. (50)

When taken integral over a manifold without boundary, the total derivative �R drops off. The

remaining three terms can be reorganized as a linear combination of Euler density E4, the squared

Weyl tensor, W 2
µνρσ, and the squared scalar curvature R, where

E4 = R2
µνρσ − 4R2

µν +R2, (51)

W 2
µνρσ = R2

µνρσ − 2R2
µν + 1

3 R
2. (52)
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Then we may write

〈Θ〉 = aE4 + bR2 − cW 2
µνρσ + d�R. (53)

The minus sign before c is conventional. Explicit calculation shows that

a =− 1

360(4π)2
(NS + 11NF + 62NV ), (54)

b = 0, (55)

c =
1

120(4π)2
(NS + 6NF + 12NV ), (56)

d =
2

3
c (57)

Here NS , NF and NV are numbers of massless scalars, Dirac fermions and vectors, respectively.

Then we see that after taking integral of 〈θ〉 over the 4-sphere, only a-term remains, since the

sphere is conformally flat which implies Wµνρσ = 0. Therefore the Cardy’s conjecture amounts to

proposing a-term coefficient (we will call a-anomaly in the following) as a candidate of monotonic

function along RG flows.

The conjecture was proved for 4D’s case by Komargodski and Schwimmer [10].

3.2 ’t Hooft Anomaly Matching Condition

3.3 A New Proof of 2D c-Theorem from Weyl Anomaly Cancellation

Now let us outline the proof of 2D c-theorem using the anomaly cancellation argument. As we

shall see, this proof can be generalized directly to 4-dimensional theories, yet the calculation in 2D

is much simpler than that in 4D. Thus this will serve as a warming up and we will be sketchy here.

Let us consider the case in which the UV CFT is deformed by a set of relevant operators with

some characteristic mass scales Mi. When written with curved background metric, the action is

not invariant under Weyl transformation. But this explicit broken Weyl symmetry can always

be interpreted as if it is spontaneously broken, by introducing massless dilaton field τ(x), which

behaves as τ(x)→ τ(x) + σ(x) under the Weyl transformation. This can be achieved by replacing

each mass parameter Mi appears in the Lagrangian with Mie
−τ(x). Then the action realize the

Weyl symmetry nonlinearly.

At this state the dilaton plays the role of spectator field, and couples to matter field with

arbitrarily weak couplings. Then on one hand, the UV CFT contains a Weyl anomaly given by

〈Θ〉 = −cUVR/24π; on the other hand, the IR limit of the theory may contain a nontrivial IR

CFT, together with massless dilatons. The IR CFT also exhibit Weyl anomaly 〈Θ〉 = −cIRR/24π,

while the Weyl transformation property of the dilaton theory is govern by its effective action. This

effective action may contain the usual term as an integral of Weyl invariant Lagrangian, which in

2D is simply the Einstein-Hilbert action. But we note that this action in 2D is a topological term

and is naturally Weyl invariant. Thus to capture the Weyl anomaly contributed by matter field,

the effective action of dilaton should contains a Wess-Zumino term, which in 2D reads

SWZ[τ, gµν ] =
c

24π

∫
d2x
√
g
(
τR+ (∂τ)2

)
. (58)

10
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It is easy to check that this action transforms under Weyl transformation as

δσSWZ =
c

24π

∫
d2x
√
g
[
Rσ + 2∂µ

(
(∂µ)σ

)]
=

c

24π

∫
d2x
√
gσR. (59)

Now, since the full theory has no explicit (operatorial) broken of Ward identity of Weyl symmetry,

thus the anomaly in the UV and IR should match. That is, the anomaly of IR system, consisting

of anomalies from IR CFT and that from Wess-Zumino term of dilaton action, should reproduce

the anomaly of the UV CFT. It is straightforward to see that this amount to set the dilaton’s

effective action in the flat background limit to be

S =
cUV − cIR

24π

∫
d2x (∂τ)2. (60)

On the other hand, the effective action of dilaton field can be obtained by explicitly integrating

out matter filed from the full theory. We would like to find the (∂τ)2 term from this calculation.

Note that dilaton couples to matter fields through τΘ. Thus, the terms quadratic in τ with two

derivatives can be extracted as follows,〈
exp

(∫
d2x τΘ

)〉
=

1

2

∫
d2xd2y τ(x)τ(y)〈Θ(x)Θ(y)〉+ · · ·

=
1

4

∫
d2x τ(x)∂µ∂ντ(x)

∫
d2y (y − x)µ(y − x)ν〈Θ(x)Θ(y)〉+ · · · (61)

The y-integral is x-independent due to translational invariance,∫
d2y (y − x)µ(y − x)ν〈Θ(x)Θ(y)〉 =

1

2
ηµν

∫
d2y y2〈Θ(0)Θ(y)〉. (62)

Therefore the contribution to the dilaton effective action with two derivatives is

1

8

∫
d2x τ∂2τ

∫
d2y y2〈Θ(y)Θ(0)〉. (63)

Comparing with (60), we see that

cUV − cIR = 3π

∫
d2y y2〈Θ(y)Θ(0)〉. (64)

Then, by unitarity of the theory, it follows immediately that cUV − cIR ≥ 0.

3.4 A 4D a-Theorem and Its KS Proof

Now we come to the proof of the “a-theorem” in 4D. The main idea of the proof is the same

with that in 2D case as sketched in the last subsection. But now we distinguish three different

cases, namely, we consider the UV CFT deformed by 1) spontaneous break down of conformal

symmetry in a vacuum from moduli space; 2) by a relevant deformation; 3) by a marginally

relevant deformation.

The proof still consists of three steps: 1) Writing down the theory with curved background

metric and interpreting explicit deformation of the conformal symmetry as spontaneous breaking

by introducing dilaton field. 2)Showing that the the contribution to ττ scattering tin flat spacetime

limit is fully governed by the a-anomaly term in the dilaton effective action. 3) Applying unitary

argument to show that the dilaton scattering amplitude is positive definite.
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A A Brute-Force Calculation of Wess-Zumino Term of 4D Con-

formal Group

We first calculate the Weyl transformation properties of dim-4 scalars made out of curvature

tensor Rµνρ
σ. By definition, the Weyl transformation acting on the metric gµν is given by

g′µν = e2tgµν . (65)

It follows directly that g′µν = e−2tgµν . Then, with this we can find the curvature tensor Rµνρ
σ

transforms as

R′µνρ
σ = Rµνρ

σ + 2δσ[µ∇ν]∇ρt− 2gσλgρ[µ∇ν]∇λt

+ 2(∇[µt)δ
σ
ν]∇ρt− 2(∇[µt)gν]ρ∇σt− 2gρ[µδ

σ
ν](∇λt)

2. (66)

Similarly, the Ricci tensor transforms as

R′µν = Rµν − (n− 2)∇µ∇νt− gµν∇2t+ (n− 2)∇µt∇νt− (n− 2)gµν(∇λt)2, (67)

and the scalar curvature transforms as

R′ = e−2t
[
R− 2(n− 1)∇2t− (n− 1)(n− 2)(∇µt)2

]
. (68)

With this we evaluate the Weyl transformations of R2
µνρσ, R2

µν and R2, as

R′2µνρσ = e−4t
[
R2
µνρσ + 8Rµν

(
(∇µt)(∇νt)−∇µ∇νt

)
− 4R(∇µt)2

+ 4(n− 2)(∇µ∇νt)2 + 4(∇2t)2 + 8(n− 2)(∇2t)(∇µt)2

− 8(n− 2)(∇µt)(∇νt)(∇µ∇νt) + 2(n− 1)(n− 2)(∇µt)4
]
, (69)

R′2µν = e−4t
[
R2
µν + 2(n− 2)Rµν

(
(∇µt)(∇νt)−∇µ∇νt

)
− 2R∇2t− 2(n− 2)R(∇µt)2

+ (n− 2)2(∇µ∇νt)2 + (3n− 4)(∇2t)2 − 2(n− 2)2(∇µt)(∇νt)(∇µ∇νt)

+ 2(n− 2)(2n− 3)(∇2t)(∇µt)2 + (n− 1)(n− 2)2(∇µt)4
]
, (70)

R′2 = e−4t
[
R2 − 4(n− 1)R∇2t− 2(n− 1)(n− 2)R(∇µt)2 + 4(n− 1)2(∇2t)2

+ (n− 1)2(n− 2)2(∇µt)4 + 4(n− 1)2(n− 2)(∇2t)(∇µt)2
]
. (71)

Then it is straightforward to see that in 4D spacetime,

W ′2µνρσ = e−4tWµνρσ, (72)

E′4 = e−4t
[
E4 − 4R∇2t− 8Rµν

(
(∇µt)(∇νt)−∇µ∇νt

)
− 8(∇µ∇νt)2 + 8(∇2t)2 + 8(∇2t)(∇µt)2 + 8(∇µt)(∇νt)∇µ∇νt

]
. (73)

As was claimed,
√
−gW 2

µνρσ is a Weyl invariant.
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