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1 Introduction

2 The Homogeneous and Isotropic Universe

Our universe appears to be a system with 3 spatial dimensions and 1 temporal dimension.

2.1 Weighing the universe

Before going into a more detailed study of the universe, we firstly have a brief look at the
constituents of the universe from the observational side. In the homogeneous and isotropic case,
this amounts to figuring out the main contents of the universe, and measuring their energy densi-
ties. According to our understanding today, our universe consists of matter, radiation, and “dark
energy”. This bold classification is from the viewpoint of the

2.1.1 Photon

The energy density of photon can be inferred from its temperature. This is because photons,
although decoupled long ago from the rest of the world, still remain thermally distributed (as
measured beautifully by COBE satellite). So its energy density is given by,

� D
�2

15
T 4; (1)

where T D 2:7K is the well-known temperature of CMB observed today.

2.1.2 Baryonic matter

The baryonic matter here includes all atoms, neutral and ionized, as well as electrons, a bold
nomenclature from cosmology community.

�E-mail: xianyuzhongzhi@gmail.com
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2.2 Equations of motion for the homogeneous and isotropic universe

The universe is a coupled system of energy and spacetime. The dynamics of spacetime is
governed by the Einstein’s equation from general relativity, and the dynamics of matter distri-
bution is governed by Boltzmann’s equation. At homogeneous and isotropic level, there is only
one dynamical variable for spacetime, namely the scale factor a D a.t/ as a function of time t ,
while the dynamical variables for matter contents are simply given by the energy density �i .t/,
or equivalently, the number density ni .t/. In this case, the Einstein’s equation reduces the Fried-
mann’s equation, �

da=dt

a

�2

D
8�G

3

X
i

�i ; (2)

while the Boltzmann’s equation reduces to a set of differential equations for variables ni .t/. Now
we derive them.

The Boltzmann’s equation, roughly speaking, is the statement that the rate of change for the
number of particles in a given phase space element, equals to the rate of collisions kicking the
particle into the given phase space element, minus the rate of collision kicking the particle out of
the phase space element. For the 2 to 2 process of 1 C 2 ! 3 C 4, the only case we are interested
in, this statement can be represented by the following equation for species 1,

1

a3

d.n1a3/

dt
D

Z 4Y
iD1

d3pi

.2�/32Ei

jMj
2.2�/4ı.4/.p1 C p2 � p3 � p4/

�

h
f3f4.1 ˙ f1/.f ˙ f2/ � f1f2.1 ˙ f3/.1 ˙ f4/

i
;

(3)

where M is the amplitude for the process, fi D fi .x; p; t/ is the distribution function of species
i D 1; 2; 3; 4. When all species remain in thermal equilibrium, and when quantum effects can
be neglected, the distribution function takes the familiar form in classical statistics, f .E/ /

e�.E��/=T , with T the temperature and � the chemical potential. Then, the second line of the
Boltzmann’s equation (3) reduces to e�.E1CE2/=T

�
e.�3C�4/=T � e.�1C�2/=T

�
, and the number

density ni is given by,

ni D gi e
�i =T

Z
d3p

.2�/3
e�Ei =T : (4)

When a given species of mass mi is in thermal equilibrium with free energy and particle ex-
change, its chemical potential is zero, and its number density, denoted as n

.0/
i , can be integrated

out from the above expression to be,

n
.0/
i D gi

Z
d3p

.2�/3
e�Ei =T

D

�
gi

� mi T

2�

�3=2

e�mi =T ; mi � T;

gi

T 3

�2
; mi � T:

(5)

Then we can reexpress chemical potential in terms of number density, through, e�i =T D ni =n
.0/
i .
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Then the second line of (3) further reduces to,

e�.E1CE2/=T

�
n3n4

n
.0/
3 n

.0/
4

�
n1n2

n
.0/
1 n

.0/
2

�
On the other hand, we define the thermally averaged cross section h�vi to be,

h�vi �
1

n
.0/
1 n

.0/
2

Z 4Y
iD1

d3pi

.2�/32Ei

jMj
2.2�/4ı.4/.p1 C p2 � p3 � p4/e�.E1CE2/=T ; (6)

then the Boltzmann’s equation (3) simplifies to,

1

a3

d.n1a3/

dt
D n

.0/
1 n

.0/
2 h�vi

�
n3n4

n
.0/
3 n

.0/
4

�
n1n2

n
.0/
1 n

.0/
2

�
: (7)

When some components deviate from thermal equilibrium, namely when the rate of collision is
comparable with the rate of cosmic expansion, this is the proper equation we will work with.
However, when the collision rate n2h�ni is much larger than the expansion rate H , the left hand
side of above equation can be neglected, then we get the following equation,

n3n4

n
.0/
3 n

.0/
4

D
n1n2

n
.0/
1 n

.0/
2

; (8)

which is known as Saha equation.
In the following several subsections we apply the equations derived above to three processes

in early universe: the decoupling of dark matter, the big-bang nucleosynthesis, and the recombi-
nation.

2.3 Big-bang nucleosynthesis

When the temperature of the universe is around 1MeV, we have:

� Relativistic particles in thermal contact: photon  and electron/positron e˙. They have
the same abundance, ignoring the tiny difference between Bose-Einstein and Fermi-Dirac
statistics (2 helicity degrees for each of ; e�; eC).

� Decoupled component: relativistic neutrino. Although decoupled, neutrinos have the same
temperature as photons and electrons, thus the same abundance for each helicity degree.

� Nonrelativistic particles: hadron. No anti-hadrons around 1MeV. The abundance of hadrons
is usually represented in the ratio �b � nb=n D 5:5 � 10�10.˝bh2=0:020/.

The task then is to determine the fate of hadrons, namely the formation of chemical elements. To
solve the problem, we introduce two simplifications:

1. Practically only isotopes of hydrogen and helium can be formed significantly, besides there
is also trace amount of lithium, around 10�9. This is due to the large binding energy of
4He.
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2. When T & 0:1MeV, there are only free protons and neutrons, and no nuclei exist with
significant amount. This is because, nuclei, once formed, are soon destroyed by high
energy photons since the latter are very abundant.

To understand the second point above, we make a simple estimate, by considering the process
n C p ! D C  . Photons are in thermal equilibrium so n D n

.0/
 , and,

nD

nnnp

D
n

.0/
D

n
.0/
n n

.0/
p

D
3

2 � 2

� 2�mD

mnmpT

�3=2

eBD=T
'

3

4

� 4�

mpT

�3=2

eBD=T ;

where BD D mn C mp � mD D 2:22MeV is the binding energy of D. Now that nn; np � nb ,
we have,

nD

nb

�
nb

n

� n.0/
 �

� 4�

mpT

�3=2

eBD=T
� �b

� T

mp

�3=2

eBD=T ; (9)

where we used n D n
.0/
 and n

.0/
 D 2T 3=�2. So when BD=T is not too large, nD=nb � 1

due to �b � 1. That is, no light nuclei were formed when T & 0:1MeV.
So we first consider the abundance of neutron during this period of time.

2.3.1 Abundance of neutron

Our problem is to compute the ratio nn=np . Protons and neutrons are in thermal equilibrium
through weak process n C �e $ p C e� and n C eC $ p C N�e . Then, using E D m C p2=2m,
we have,

n
.0/
p

n
.0/
n

D
e�mp=T

R
dp p2e�p2=2mpT

e�mn=T
R

dp p2e�p2=2mnT
' eQ=T ;

with Q � mn � mp D 1:293MeV. Then, n
.0/
p D n

.0/
n when T � Q, and n

.0/
n goes down as

T . Q, and would go to zero if weak interaction is efficient enough, which is actually not. So
n

.0/
n will go down toward a nonzero constant when the expansion gets faster than the collision

above, if neutron would not decay. Now let us determine the fraction of neutron as the universe
expands.

For clarity we define Xn � nn=.nn C np/ to be the neutron fraction. Its time dependence
can be read from the Boltzmann equation of nn, with process n C �e ! p C e�. Recall that
light particles �e and e� are in thermal equilibrium, thus n� D ne D n

.0/

`
. Then, Boltzmann’s

equation (7) becomes,
1

a3

d.nna3/

dt
D �np

�
npn

.0/
n

n
.0/
p

� nn

�
; (10)

where the collision rate �np � n
.0/

`
h�vi. Now,

a�3 d.nna3/

dt
D a�3 d..nn C np/Xna3/

dt
D .nn C np/a3

š
conserved

�a�3 dXn

dt
;
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therefore we have,
dXn

dt
D �np

�
.1 � Xn/e�Q=T

� Xn

�
: (11)

To simplify this equation, we change the variable T ! x � Q=T , then, dXn

dt
D

dXn

dx
dx
dt

, and,

dx

dt
D �

x

T

dT

dt
; T / 1=a )

1

T

dT

dt
D �H D �

r
8�G

3
� (Friedmann’s equation):

The energy density, during this era of radiation domination, is given by,

� D
�2

30
T 4

� X
i2bosons

gi C
7

8

X
i2fermions

gi

�
� g�

�2

30
T 4;

in which only relativistic degrees are counted. When T ' 1MeV, we have g� ' 10:75, which
is contributed from 2 degs. from photon, 6 from neutrinos (3 generations with their antiparticles)
and 4 from e˙. So,

dx

dt
D xH D x

� 8�G

3
� g�

�2

30

�1=2 Q2

x2
D

H.x D 1/

x
;

where H.x D 1/ D
p

10:75 � 4�3GQ4=45 ' 1:13sec�1. Then,

dXn

dx
D

x�np

H.x D 1/

h
e�x

� Xn.1 C e�x/
i
: (12)

Now let us calculate the collision rate �np for the process n C �e ! p C e�, given by,

�np D
1

n
.0/
n

Z
d3pn

.2�/32mn

d3pp

.2�/32mp

d3pe

.2�/32pe

d3p�

.2�/32p�

� jMj
2.2�/4ı.4/.pn C p� � pp � pe/e�.mnCp�/=T

D
1

4mn

Z
d3pp

.2�/32mp

d3pe

.2�/32pe

d3p�

.2�/32p�

jMj
2.2�/4ı.4/.pn C p� � pp � pe/e�p�=T

D
1

4mn

�
1

2mp

Z
d3pe

.2�/32pe

d3p�

.2�/32p�

jMj
2.2�/ı.Q C p� � pe/e�p�=T ;

where we have take n and p to be nonrelativistic, e and �e to be ultra-relativistic. The squared am-
plitude, which can be read from the 4-fermion interaction, is jMj2 D 32G2

F .1 C 3g2
A/m2

ppep� .
The axial-vector coupling of neutron gA can be obtained by measuring the lifetime of neu-
tron �n D 886:7sec, which can be calculated, also with 4-fermion interaction, to be ��1

n D

�0G2
F .1 C 3g2

A/m5
e=2�3, where

�0 D

Z Q=me

1

d� �.� � Q=me/2.�2
� 1/1=2

D 1:636:

Then we can continue evaluating �np ,

�np D 2 �
G2

F .1 C 3g2
A/mp

.2�/5mn

Z
d3ped3p� ı.Q C p� � pe/e�p�=T

'
255

�nx5
.12 C 6x C x2/:
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Here we multiply the collision rate by 2 to take account of the two processes of the same rate.
Now we are ready to solve the differential equation (12) numerically. This solution works

well for T & 1MeV. Below this temperature, two more effects should be taken into account: 1)
Neutron decay n ! p C e� C N�e; 2) Deuterium formation n C p ! D C  . The first effect
can be accommodated conveniently by including a decay factor e�t=�n , using the t � T relation
t D 132sec.0:1MeV=T /2. To estimate the starting of efficient Deuterium formation, we go back
to (9). Then the starting point T D Tnuc. of D-formation should be such that nD=nb � O.1/,
then log �b C

3
2
log.Tnuc.=mp/ � �BD=Tnuc. ) Tnuc. ' 0:07MeV. The neutron abundance

around this time is Xn exp.� 132
886:7

. 0:1
0:07

/2/ D 0:11.
The above results can be summarized in the following figure. The dot-dashed Saha curve

shows the estimate of (8), namely the estimate with thermal equilibrium. It works well above
T > Q. The deviation from equilibrium becomes important for T . Q. The dashed “stable”
line shows the solution of (12) without neutron decay. The solution together with neutron decay
factor is shown by solid line.
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In fact, nearly all neutrons go into 4He because it has a much larger binding energy than D. So
we get the final abundance for 4He, represented by X4 � 4n.4He/=nb , to be X4 D 2Xn.Tnuc./ '

0:22. More accurate solution taking account of (quantum statistics + finite electron mass + time
variation of g�) gives,

X4 D 0:2262 C 0:0135 log.�b=10�10/:

A feature of this solution is that X4 depends on �b only logarithmically. This dependence can
be understood in this way: (9) tells us roughly that log �b / T �1

nuc.. On the other hand, X4 D

2Xn.Tnuc./ / e�tnuc.=�n . Then one may naively conclude from these two expressions that X4 / �b

rather than log �b . However, the crucial fact here is that D-formation begins right after neutrons
start decaying, so the exponential X / e�t=�n can be well approximated by a linear function in
this region. As a result, we have X4 � log �b .

There are still some deuterium formed, since the process DCp ! 3HeC is not completely
efficient. More accurate computation reveals that D is formed right after T D Tnuc, and the
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number density finally reaches 10�5 � 10�4. The important thing here is that nD depends on �b

rather sensitively, and this sensitive dependence can be used to infer the baryon density through
the measured nD . nD can be measured quite accurately by looking at absorbing spectrum of
gases at z � 3, which gives D=H � 3 � 10�5, and ˝bh2 ' 0:02.

2.4 Recombination

Although H has the binding energy 13.6eV, the abundance of neutral H is very low around
T � 1eV, again due to small �b . Now we use Saha approximation to estimate the temperature of
recombination. When e�Cp ! HC is in equilibrium, nenp=nH D n

.0/
e n

.0/
p =n

.0/
H . (Remember

that n D n
.0/
 .) The electric neutrality requires ne D np . So let’s define Xe � ne=.ne C nH / D

np=.np C nH /. Then the above Saha equation becomes,

X2
e

1 � Xe

D
1

ne C nH

� meT

2�

�3=2

e�.meCmp�mH /=T :

As a rough estimation, ignoring 4He, ne C nH ' nb D �bn � 10�9T 3. When T � 13:6eV,
the right hand side of above expression is roughly 109.me=T /3=2 ' 1015 ) Xe ' 1. As T is
much lower than 13:6eV, Xe goes down, and we need to solve Boltzmann equation (7).

2.5 Dark matter decoupling

3 Theory of Cosmological Perturbations

When studying the fluctuations on the homogenous and isotropic background, we need to
perturb both Boltzmann’s equation and Einstein’s equation. In this section we derive the first-
order perturbation to these equations.

3.1 Boltzmann’s equations of first-order perturbations

In last section we used the integrated Boltzmann’s equation, where the left hand side is the
time derivative of number density. In order to study the distribution more carefully, including the
variation in space and momentum, we remove the integration over the particle 1’s phase space,
which leads to a more general equation, df .x; P; t/=dt D C Œf �, where C Œf � is the collision
integral. In the following we derive the 1st-order perturbed form of this equation for several
components of early universe.

3.1.1 Photon: collisionless part

Let’s begin with the photon. The left hand side of the equation is,

df

dt
D

@f

@t
C

dxi

dt

@f

@xi
C

dP �

dt

@f

@P �
; (13)

7



Notes by Zhong-Zhi Xianyu Begin on 2014/07/23, last updated on 2014/09/25

where the 4-momentum P � � dx�=d�, and � is the affine parameter of photon’s world-line.
The coefficients dxi =dt and dP �=dt can be obtained from photon’s equation of motion, namely
its geodesic equation.

We will consider scalar perturbation at the moment and we choose the conformal Newtonian
gauge, so that the metric is,

g00 D �1 � 2	.Ex; t/; g0i D 0; gij D a2ıij .1 C 2˚.Ex; t//; (14)

where 	 is Newtonian potential and ˚ is the perturbation to spatial curvature, both of which are
1st order perturbations.

Now we simplify (13). Firstly, we note that P 0 is not an independent variable. In fact, for
photon we have 0 D P 2 D g��P �P � D �.1 C 2	/.P 0/2 C p2, where p2 � gij P i P j . So we
get,

P 0
D

p
p

1 C 2	
' p.1 � 	/; (15)

up to 1st order. Note that 	 < 0 corresponds to overly dense region, so this equation says that
a photon receives/loses energy, namely blue/red shifted, when travelling into/out of an overly
dense region.

Now that P 0 is not independent, we should keep P i in (13) only, and we will use the magni-
tude p and the direction Opi (ıij Opi Opj D 1) as the variables, so that

df

dt
D

@f

@t
C

dxi

dt

@f

@xi
C

dp

dt

@f

@p
C

d Opi

dt

@f

@ Opi
:

At 0th order, the Bose-Einstein distribution of photon depends only on p, not on Opi , so @f =@ Opi

is of 1st order. On the other hand, d Opi =dt is also of 1st order, since a photon does not change its
direction in FRW background. Thus the last term on the right hand side in the above equation is
of 2nd order and can be dropped in 1st order treatment.

dxxxiii ===dttt term. By definition P � D dx�=dt we have dxi =dt D P i =P 0. To represent this
in terms of p and Opi , we use P 0 D p.1 � 	/, and assume P i D C Opi . The proportional
constant can be found by p2 D gij P i P j D ıij a2.1 C 2˚/ıij Opi Opj C 2 D a2.1 C 2˚/C 2, so
C D p.1 � ˚/=a,P i D p Opi .1 � ˚/=a, and,

dxi

dt
D

Opi

a
.1 C 	 � ˚/: (16)

Overly dense region has 	 < 0 and ˚ > 0. Then the equation above states that photon decel-
erates in overly dense region. However, since @f =dxi is of 1st order (BE distribution does not
depend on coordinates), so we can further approximate the equation above to be dxi =dt ' Opi =a,
so we have finally,

dxi

dt

@f

@xi
D

Opi

a

@f

@xi
:
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dppp===dttt term. This term can be found by using the 0-component of geodesic equation,

dP 0

d�
D �� 0

��P �P � : (17)

The l.h.s reads,

dP 0

d�
D

dt

d�

d
dt

h
p.1 � 	/

i
D P 0

h dp

dt
.1 � 	/ � p

d	

dt

i
;

so,
dp

dt
D p

d	

dt
� � 0

��

P �P �

P 0
.1 C 	/ D p

d	

dt
� � 0

��

P �P �

p
.1 C 2	/;

up to 1st order. The connection term can be worked out to be,

� 0
��

P �P �

p
D .�1 C 2	/

�
� p

@	

@t
� 2

p Opi

a

@	

@xi
� p

� @˚

@t
C H

��
:

So we get,
1

p

dp

dt
D �H �

@˚

@t
�

Opi

a

@	

@xi
: (18)

The three terms on the r.h.s. can be understood physically as follows. The first term shows the
momentum gets lost due to expansion. The second term means that a gravitational potential well
deepening with time (@˚=@t > 0) causes momentum decreasing. The third term means that a
photon travelling into a potential (@	=@xi < 0) well acquires momentum.

Perturbation to the distribution function. To find the complete 1st order perturbed (13), we
still have to expand the distribution function f . At 0th order, we have the usual BE distribution1,
f .0/ D 1=.ep=T .t/ � 1/, where the temperature T depends on time t due to cosmic expansion.
So we write the 1st order perturbed form of f as,

f .Ex; p; Op; t/ D

�
exp

�
p

T .t/
�
1 C �.Ex; Op; t/

��
� 1

��1

: (19)

Here we assume the temperature fluctuation � D ıT=T does not depend on p. This is correct for
Compton scattering because it does not change the magnitude of photon’s momentum in effect.
Now, expanding to 1st order, we have,

f D f .0/
� p

@f .0/

@p
�: (20)

1The convention here, following Dodelson’s, assigns the distribution to a single helicity state of photon, so there is no
factor 2.
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Zeroth-order Boltzmann’s equation. Now we are ready to write down the zeroth order Boltz-
mann’s equation for photons,

df

dt

ˇ̌̌̌.0/

D

�
@

@t
� Hp

@

@p

�
f .0/

D 0: (21)

Here we don’t include collision term on the r.h.s. because it is automatically made zero by
0th order distribution f .0/. We are already able to read some physics from this equation. For
example, the first term of this equation,

@f .0/

@t
D

dT

dt

@f .0/

@T
D

dT

dt

�
�

p

T

@f .0/

dp

�
;

so this equation says,�
dT=dt

T
C

da=dt

a

�
@f .0/

@p
D 0 )

dT

T
D �

da

a
) T /

1

a
:

Collisionless first-order Boltzmann’s equation. At last we can write down the l.h.s. of 1st
order perturbed part of photon’s Boltzmann’s equation, as,

df

dt

ˇ̌̌̌.1/

D

�
@

@t
� Hp

@

@p

�
f .1/

C
Opi

a

@f .1/

dxi
� p

@f .0/

dp

�
@˚

@t
C

Opi

a

@	

@xi

�
;

where f .1/ D �p.@f .0/=@p/�. Keeping 1st order terms only, we get,

df

dt

ˇ̌̌̌.1/

D �p
@f .0/

@p

�
@�

@t
C

Opi

a

@�

@xi
C

@˚

@t
C

Opi

a

@	

@xi

�
: (22)

3.1.2 Photon: collision integral

Now we study the collision integral for photons’ Boltzmann’s equation, taking the collision to
be Compton scattering with electron, e�.Eq/ C . Ep/ $ e�.Eq0/ C . Ep0/. We will ignore quantum
statistical factors .1 ˙ f /, because: 1) The stimulated emission factor .1 C f / for photon is
important only at 2nd order; 2) The Pauli blocking of electron .1 � fe/ is never important after
electron-positron annihilation, due to the tiny occupation number. Then, the collision integral
becomes,

C Œf . Ep/� D
1

2p

Z
d3q

.2�/32Ee.q/

d3q0

.2�/32Ee.q0/

d3p0

.2�/32p0
jMj

2

� .2�/4ı.4/.p C q � p0
� q0/

h
fe.Eq0/f . Ep0/ � fe.Eq/f . Ep/

i
:

(23)

The pre-factor 1=2p on the r.h.s. is from the fact that we are using df =dt rather than the covariant
form df =d�, for the l.h.s. of Boltzmann’s equation. This produces a factor d�=dt D .1C	/=p '

1=p for the r.h.s., where the last approximation is because the integral is already of 1st order.
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We consider the case where electron is nearly nonrelativistic, so that Ee.q/ D me Cq2=2me .
now we try to carry out the collision integral.

The integral with d3q0 is straightforward with the aid of the ı.3/-function,

C Œf . Ep/� D
�

8m2
ep

Z
d3q

.2�/3

d3p0

.2�/3

1

p0
ı

�
p0

C
.Eq C Ep � Ep0/2

2me

� p �
q2

2me

�
� jMj

2
h
fe.Eq C Ep � Ep0/f . Ep0/ � fe.Eq/f . Ep/

i
:

To go further, we need some knowledge about typical kinetics of Compton scattering, given by
q � p; p0 and j Ep0 � Epj � p � T . So we have,

Ee.q/ � Ee.Eq C Ep � Ep0/ '
. Ep0 � Ep/ � Eq

me

�
T q

me

� T vb;

where the baryon’s velocity vb � 1. Here we speak of baryon velocity because electrons are
tightly bounded with protons by Coulomb interaction. On the other hand, Eq.q/ � T ) jEe.q/�

Ee.q0/j � Ee.q/ ) We can expand Ee.q0/ around Ee.q/,

ı

�
p C

q2

2me

� p0
�

.Eq C Ep � Ep0/2

2me

�
' ı.p � p0/ C

. Ep � Ep0/ � Eq

me

@

@p0
ı.p � p0/:

Then the collision integral becomes,

C Œf . Ep/� D
�

8m2
ep

Z
d3q

.2�/3
fe.Eq/

Z
d3p0

.2�/3p0
jMj

2

�

�
ı.p � p0/ C

. Ep � Ep0/ � Eq

me

@

@p0
ı.p � p0/

��
f . Ep0/ � f . Ep/

�
:

It’s time to call the amplitude M of Compton scattering. Let’s ignore the effects of polariza-
tion for the moment, which do contribute to temperature anisotropy, and use the spin-averaged
squared amplitude 2 , D

jMj
2
E
spin

D 2e4

�
p0

p
C

p

p0
� sin2

h Op; Op0
i

�
; (24)

where h Op; Op0i is the angle between Op and Op0. In our case p ' p0, so jMj2 ' 2e4.1 C

cos2h Op; Op0i/ D 12m2
e�T .1 C cosh Op; Op0i/, where Thomson cross section �T D

8�
3

˛2

m2
e

is the
low energy limit of Compton scattering.

We can go on dealing with collision integral now,

C Œf . Ep/� D
�

8m2
ep

� 12��T m2
e

� Z
d3q

.2�/3
fe.Eq/

�
œ

ne

2See, e.g., Peskin & Schroeder, An Introduction to Quantum Field Theory, .
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�

Z
d3p0 .1 C cos2h Op; Op0i/

.2�/3p0

�
ı.p � p0/ C

. Ep � Ep0/ � Eq

me

@

@p0
ı.p � p0/

�
�

�
f .0/.p0/ � f .0/.p/ �

�
p0 @f .0/

@p0
�. Op0/ � p

@f .0/

@p
�. Op/

��
D

3ne�T

16�p

Z 1

0

dp0 p0

Z
d˝ 0 .1 C cos2

h Op; Op0
i/

�

�
ı.p � p0/

�
� p0 @f .0/

@p0
�. Op0/ C p

@f .0/

@p
�. Op/

�
C . Ep � Ep0/ � Evb�

Eq=me

�
@

@p0
ı.p � p0/

��
f .0/.p0/ � f .0/.p/

��
:

The angular dependence here comes totally from �. Op/ and the factor .1 C cos2h Op; Op0i/ in the
integrand. In the context of cosmological perturbation theory, it is always assumed that �. Op/

has no azimuthal dependence, namely, the perturbation is axially symmetric3 . We have seen that
Compton amplitude is axially symmetric, so � will remain axially symmetric if it is originally
so.

To carry the integral out, we define the `-th multipole �` of �. Op/ by,

�`.Ex; t/ �
1

4�.�i/`

Z
d˝ 0 P`. Op0/�. Op0; Ex; t/; (25)

where P`.z/ is the Legendre polynomial of `-th order. We also need 1 C cos2h Op; Op0i D
4
3

C

2
3
P2.cosh Op; Op0i/, as well as the formula,

P`

�
cosh Op; Op0

i
�

D
4�

2` C 1

X̀
mD�`

Y`m. Op/Y �
`m. Op0/:

Due to axial symmetry, only m D 0 term on the r.h.s. contributes. So, using Y20.�; '/ D

�

q
5

4�
P2.cos �/, we have,

C Œf . Ep/� D
ne�T

p

Z 1

0

dp0 p0

�
ı.p � p0/

�
� p0 @f .0/

@p0

�
�0 �

1

2
P2. Op/�2

�
C p

@f .0/

@p
�. Op/

�
C Ep � Evb

�
@

@p0
ı.p � p0/

��
f .0/.p0/ � f .0/.p/

��
D

ne�T

p

�
p

@f .0/

@p

�
� �0 C

1

2
P2. Op/�2 C �. Op/

�
� . Ep � Evb/p

@f .0/

@p

�
D � p

@f .0/

@p
ne�T

h
�0‘

monopole

�
1

2
P2. Op/�2™

quadrupole

��. Ep/ C Op � Evb”
dipole

i
:

(26)
3See, e.g., C.-P. Ma and E. Bertschinger, Astrophys. J. 455 (1995) 7 [arXiv:astro-ph/9506072], at the end of Sec. 5.1.
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This is our final result for photon’s collision integral. It shows that Compton scattering leads to a
rather simple distribution for photons, of which only monopole, dipole, and (perhaps) quadrupole
are important.

3.1.3 Boltzmann’s equation for photon

In previous two sub-subsections we have found both the l.h.s. and r.h.s. of Boltzmann’s equa-
tion for photon in 1st order. Now we combine them, as,

@�

@t
C

Opi

a

@�

@xi
C

@˚

@t
C

Opi

a

@	

@xi
D ne�T

h
�0 �

1

2
P2. Op/�2 � �. Ep/ C Op � Evb

i
: (27)

To write it into a more convenient form, we use conformal time � instead. We will write P� �

d�=d�, etc. Then the above equation becomes,

P� C Opi @�

@xi
C P̊ C Opi @	

@xi
D ne�T a

h
�0 �

1

2
P2. Op/�2 � �. Ep/ C Op � Evb

i
: (28)

We then go to Ek-space, define,

�.Ex/ D

Z
d3k

.2�/3
ei Ek� Ex�. Ek/:

Small perturbations then means different modes do not mix. We further define the following two
quantities that will be frequently used in subsequent sections.

1. Define � � Ok � Op, namely the (cosine of the) angle between photon’s direction ( Op) and the
direction of temperature’s gradient ( Ok). We usually assume baryon’s velocity is irrotational,
namely Evb k Ek ) Evb � Op D vb�.

2. Define the optical depth of photon, �.�/ �
R �0

� d�0 ne�T a. Then P� D �ne�T a. In late
times ne is small so � � 1, while in early times � is large.

With these definitions, we write the following equation, as our final results for 1st order perturbed
Boltzmann’s equation of photon,

P� C ik�� C P̊ C ik�	 D �P�
�
�0 �

1

2
P2.�/�2 � � C �vb

�
: (29)

3.1.4 Boltzmann’s equation for cold dark matter

We take the W(eakly)I(nteracted)M(assive)P(article) assumption for dark matter. So these
are nonrelativistic particle, which has g��P �P � D �m2. Still using .E; p; Opi / as variables, we
have then,

P �
D

�
E.1 � 	/; p Opi 1 � ˚

a

�
;

13
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and the Boltzmann’s equation of DM’s distribution function fdm can be easily worked out to be,

0 D
dfdm

dt
D

@fdm

@t
C

dxi

dt

@fdm

@xi
C

dE

dt

@fdm

dE

D
@fdm

@t
C

Opi

a

p

E

@fdm

@xi
�

�
da=dt

a

p2

E
C

p2

E

@˚

@t
C

Opi p

a

@	

@xi

�
@fdm

dE
:

(30)

The collision integral is simply zero because DM almost does not interact with anything. For the
same reason, we do not have to assume a thermal distribution for it, but we do need to keep its
velocity as the 1st order perturbation. So with the definition for number density ndm and velocity
vi

dm,

ndm D

Z
d3p

.2�/3
fdm; vi

dm D
1

ndm

Z
d3p

.2�/3
fdm

p Opi

E
; (31)

let’s firstly take the zeroth moment (monopole) of the above equation,

0 D
@

@t

Z
d3p

.2�/3
fdm C

1

a

@

@xi

Z
d3p

.2�/3
fdm

p Opi

E

�

�
da=dt

a
C

@˚

@t

� Z
d3p

.2�/3

p2

E

@fdm

@E
�

1

a

@	

@xi

Z
d3p

.2�/3

@fdm

@E
Opi p:

The first two terms are easy. The integral in the third term reads,Z
d3p

.2�/3

p2

E

@fdm

dE
D

Z
d3p

.2�/3

p2

E

dp

dE

@fdm

dp
D

Z
d3p

.2�/3
p

@fdm

dp

D
4�

.2�/3

Z 1

0

dp p3 @fdm

@p
D �3 �

4�

.2�/3

Z 1

0

dp p2fdm D �3ndm;

while the fourth term is of second order and thus can be dropped. So we get the monopole
equation,

@ndm

dt
C

1

a

@.ndmvi
dm/

@xi
C 3

�
da=dt

a
C

@˚

@t

�
ndm D 0; (32)

which is actually the continuity equation for DM. Its zeroth order can be extracted as follows,

@n
.0/
dm

dt
C 3

da=dt

a
n

.0/
dm D 0 )

d.n
.0/
dm a3/

dt
D 0 ) n

.0/
dm /

1

a3
;

which reproduces a familiar result. Now we define the 1st order perturbation to ndm as ndm D

n
.0/
dm

�
1 C ı.Ex; t/

�
with ı the density contrast, then the 1st order of the above continuity equation

is,
@ı

@t
C

1

a

@vi

@xi
C 3

@˚

@t
D 0: (33)
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where we have written vi
dm D vi for simplicity. Now we take the first moment of (30), multiply-

ing it by
R d3p

.2�/3

p Opj

E
,

0 D
@

@t

Z
d3p

.2�/3
fdm

p Opj

E
C

1

a

@

@xi

Z
d3p

.2�/3
fdm

p2 Opi Opj

E2

�

�
da=dt

a
C

@˚

@t“
higher order

� Z
d3p

.2�/3

p3pj

E2

@fdm

@E
�

1

a

@	

@xi

Z
d3p

.2�/3

@fdm

@E

p2 Opi Opj

E
:

Again, the first term gives @.n
.0/
dm vj /=@t , the second term contains two vi ’s and thus can be

dropped. The integral in the third term gives,Z
d3p

.2�/3

p3pj

E2

@fdm

@E
D

Z
d˝ Opj

.2�/3

Z
dp

p5

E2

dp

dE

@fdm

@p

D �
d˝ Opj

.2�/3

Z
dp fdm

�
4p3

E
�

p5

E3’
higher order

�
D �4ndmvj ;

and the integral in the fourth term reads,Z
d3p

.2�/3

@fdm

@E

p2 Opi Opj

E
D

Z
d˝ Opi

Opj

™
4�ıij =3

Z
dp

.2�/3
p3 @fdm

@p
D �ıij ndm:

So the first moment of (30), up to 1st order, reads,

@.n
.0/
dm vj /

@t
C 4

da=dt

a
n

.0/
dm vj

C
n

.0/
dm

a

@	

@xj
D 0: (34)

We further use the fact that n
.0/
dm / a�3 to simplify the equation above, to get,

@vj

@t
C

da=dt

a
vj

C
1

a

@	

@xj
D 0: (35)

Again, we use conformal time � and go to k-space. Using the irrotational assumption (vi D v Oki ),
we find the relevant 1st order equations (33) and (35), which form a close set of equations for 1st
order perturbations .ı; v/, becomes,

˚
Pı C ikv C 3 P̊ D 0;

Pv C
Pa

a
v C ik	 D 0:

(36)

For DM the equations do not contain higher order moments because we keep velocity perturba-
tion vj only to linear term. For not-so-heavy DM, e.g. neutrino, we do need higher moments.
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3.1.5 Boltzmann’s equation for baryons

The unfortunate terminology of cosmology refers to both electrons and protons as baryons.
In fact electrons and baryons are so tightly bounded by Coulomb attraction that we are able to
take,

�e � �
.0/
e

�
.0/
e

D
�p � �

.0/
p

�
.0/
p

� ıb; Eve D Evp � Evb : (37)

Then the Boltzmann’s equations for electrons’ distribution fe.Ex; Eq; t/ and protons’ distribution
fp.Ex; EQ; t/ can be written schematically as,

dfe.Ex; Eq; t/

dt
D CCoulombŒfe� C CComptonŒfe�;

dfp.Ex; EQ; t/

dt
D CCoulombŒfp�: (38)

The Compton term for proton is absent because the cross section � / m�2 but mp � me . Now
we derive the equation for ıb . The first step is to take the zeroth moment of above two equations.
The l.h.s. of both equations are similar to the case of DM because they are all massive particles.
So the equation for fe gives,

@ne

@t
C

1

a

@.nevi
b
/

@xi
C 3

�
da=dt

a
C

@˚

@t

�
ne D

Z
d3q

.2�/3

�
CCoulombŒfe� C CComptonŒfe�

�
:

The r.h.s. actually vanishes. To see this, we note that the the collision integral CCoulomb, describing
the process e�.q/ C p.Q/ ! e�.q0/ C p.Q0/, is an integral over .Eq0; EQ; EQ0/. Together with the
additional integration over Eq0, the integral measure is d3qd3q0d3Qd3Q0, and is clearly symmetric
under exchange .Q; q/ $ .Q0; q0/. On the other hand, the integrand of the collision integral
contains a factor fe.q0/fp.Q0/ � fe.q/fp.Q/, which is antisymmetric with the above exchange
of momenta. Therefore

R
d3q CCoulombŒfe.Eq/� is clearly zero. The same argument applies for

the second term
R

d3q CComptonŒfe.Eq/�, so the r.h.s. indeed vanishes. Then we have, in terms of
conformal time � and in k-space, the following equation,

Pıb C ikvb C 3˚ D 0: (39)

From the experience with DM we know that the other equation can be found by taking the first
moment of Boltzmann’s equation above. Here, instead of multiplying the equation by

R d3q

.2�/3

Eq
E

,

we choose
R d3q

.2�/3 Eq. Then, comparing with DM’s case, we should multiply the DM’s results by
E.D m/ to get baryons equation. We do this for the sum of two equations in (38). Now that
mp � me , the proton’s equation dominates the l.h.s. in this case. Comparing with (34), we have,

mp

@.n.0/v
j

b
/

@t
C 4

da=dt

a
mpn

.0/

b
v

j

b
C

mpn
.0/

b

a

@	

@xj

D

Z
d3q

.2�/3
qj

�
CCoulombŒfe� C CComptonŒfe�

�
C

Z
d3Q

.2�/3
Qj CCoulombŒfp�:
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Note that the sum
R

d3q qCCoulombŒfe� C
R

d3Q QCCoulombŒfp� is zero. This time the reason is
that the two terms have a common integral measure dEqd EQdEq0d EQ0, and the integral contains a ı-
function of momentum conservation, ı.4/.pCQ�p0�Q0/, so we can rewrite the factor .qCQ/j

as 1
2
.q C Q/ C

1
2
.q0 C Q0/. Then, again, this factor and the integral measure is symmetric under

the exchange .q; Q/ $ .q0; Q0/, while the rest part of the integrand is antisymmetric.
Using the same argument, we can rewrite the remaining Compton collision integral as,Z

d3q

.2�/3
qj CComptonŒfe� D

Z
d3q

.2�/32Ee.q/

d3q0

.2�/32Ee.q0/

d3p

.2�/32p

d3p0

.2�/32p0
qj

jMj
2

� .2�/4ı.4/.p C q � p0
� q0/

h
fe.Eq0/f . Ep0/ � fe.Eq/f . Ep/

i
D �

Z
d3q

.2�/32Ee.q/

d3q0

.2�/32Ee.q0/

d3p

.2�/32p

d3p0

.2�/32p0
pj

jMj
2

� .2�/4ı.4/.p C q � p0
� q0/

h
fe.Eq0/f . Ep0/ � fe.Eq/f . Ep/

i
D �

Z
d3p

.2�/3
pj C Œf . Ep/�;

where C Œf . Ep/� in the last line is the collision integral in photon’s Boltzmann’s equation that we
have calculated in (26).

Now, dividing the equation by the baryon energy density �b D mpn
.0/

b
, we get,

@.v
j

b
/

@t
C

da=dt

a
v

j

b
C

1

a

@	

@xj
D �

1

�b

Z
d3p

.2�/3
pj C Œf . Ep/�:

Then we go to k-space, and multiply this equation by Okj . Using Ok � Ep D p�, the r.h.s. can be
further rewritten as,

�
1

�b

Z
d3p

.2�/3
p�CComptonŒfe.�/�

D
1

�b

Z
d3p

.2�/3
p� � p

@f .0/

@p
ne�T

h
�0 �

1

2
P2.�/�2 � �.�/ C vb�

i
D

ne�T

�b

Z 1

0

dp

2�2
p4 @f .0/

@pœ
int. by parts ) �4�

Z C1

�1

d�

2
�

h
�0 �

1

2
P2.�/�2 � �.�/ C vb�

i

D
ne�T

�b

.�4� /
h
i�1 C

1

3
vb

i
:

So the equation for vb , when written with conformal time �, is,

Pvb C
Pa

a
vb C ik	 D P�

4�

3�b

�
3i�1 C vb

�
: (40)
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3.1.6 Boltzmann’s equation: a short summary

In this subsection we have derived equations governing the 1st order perturbations of photon,
DM, and baryon. There are yet some missing pieces. Firstly we need equations for neutrino.
This is straightforward if neutrinos are treated massless. In this case the corresponding equation
can be easily got by replacing the variables in photon’s equation and taking away all interaction
terms. Let neutrino’s “temperature fluctuation” be N (the corresponding variable for photon’s
�), we then have, following (29),

PN C ik�N D � P̊ � ik�	: (41)

Another missing piece is photon’s polarization. We will postpone this part to later sections. Here
we simply introduce the variable �P that describes the polarization, and write down, for com-
pleteness, the full set of Boltzmann’s equation for 1st order perturbations of photons, baryons,
DM, and massless neutrino.

P� C ik�� D � P̊ � ik�	 � P�
h
�0 � � C �vb �

1

2
P2.�/˘

i
; (42a)

P�P C ik��P D � P�
h

� �P C
1

2

�
1 � P2.�/

�
˘

i
; (42b)

Pı C ikv D � 3 P̊ ; (42c)

Pv C
Pa

a
v D � ik	; (42d)

Pıb C ikvb D � 3 P̊ ; (42e)

Pvb C
Pa

a
vb D � ik	 C

P�

R

�
vb C 3i�1

�
; (42f)

PN C ik�N D � P̊ � ik�	; (42g)

with ˘ � �2 C �P 2 C �P 0, R�1 � 4�
.0/
 =3�

.0/

b
.

3.2 Perturbed Einstein’s equation

Now we derive the dynamical equations that govern the perturbations of spacetime. The l.h.s.
of this equation is the Einstein tensor, and the r.h.s. is proportional to energy-momentum tensor.

3.2.1 Scalar perturbation

Still consider scalar perturbations at first. Then in conformal Newtonian gauge (14), we can
derive the components of connection � �

�� D
1
2

g��.@�g�� C @�g�� � @�g��/ as,

� 0
00 D

@	

@t
; � 0

0i D
@	

@xi
; � 0

ij D a2ıij

h
H.1 � 2	 C 2˚/ C

@˚

@t

i
;

� i
00 D

1

a2

@	

@xi
; � i

j 0 D ıij

�
H C

@˚

@t

�
; � i

jk D ıik

@˚

@xj
C ıij

@˚

@xk
� ıjk

@˚

@xi
:
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Then we can derive the components of Ricci tensor R�� D @˛� ˛
�� �@�� ˛

�˛ C� ˛
ˇ˛

�
ˇ

�� �� ˛
ˇ�

�
ˇ

�˛ ,
to be,

R00 D � 3
� dH

dt
C H 2

�
C

1

a2

@2	

@xi @xi
� 3

@2˚

@t2
C 3H

� @	

@t
� 2

@˚

@t

�
;

R0i D � 2
@2˚

@t@xi
C 2H

@	

@xi
;

Rij D a2ıij

�� dH

dt
C 3H 2

�
.1 � 2	 C 2˚/ � H

@	

@t
C

@2˚

@t2
C 6H

@˚

@t

�
� ıij

@2˚

@xk@xk
�

@2.	 C ˚/

@xi @xj
:

Then the Ricci scalar R D g00R00 C gij Rij is,

R D 6
� dH

dt
C 2H 2

�
� 12

� dH

dt
C 2H 2

�
	 � 6H

@	

@t

C 6
@2˚

@t2
C 24H

@˚

@t
�

2

a2

@2.	 C 2˚/

@xk@xk
:

The 00-component and 0i -component of Einstein tensor G�� D R�� �
1
2
g��R are,

G0
0 D � 3H 2

C 6H 2	 � 6H
@˚

@t
C

2

a2

@2˚

@xk@xk
;

G0
i D 2

@2˚

@t@xi
� 2H

@	

@xi
:

On the other hand, we do not need the complete form of Gi
j , but only its traceless and longitu-

dinal part. Then the terms proportional to ıij will be irrelevant. So we will need,

Gi
j D .� � � /ıij �

1

a2

@2.˚ C 	/

@xi @xj
:

So much for the l.h.s. of Einstein’s equation G�
� D 8�GT �

� . Now consider the energy-
momentum tensor, which is given by,

T �
�.species A/ D gA

Z
d3P

.2�/3

p
�g

P �P�

P 0
fA.Ex; Ep; t/; (43)

for a given species A described by the distribution fA. Then, its 00, 0i , and ij -components can
be extracted, to 1st order in perturbation, to be,

T 0
0 D � g

Z
d3p

.2�/3
E.p/f . Ep; Ex; t/;

T 0
j D ga

Z
d3p

.2�/3
p Opj .1 C 	 C ˚/f . Ep; Ex; t/;

T j
k D g

Z
d3p

.2�/3

p2 Opj Opk.1 C 2	/

E.p/
f . Ep; Ex; t/:
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Now, for nonrelativistic particles (DM and baryons), we have defined � D �.0/.1 C ı/, so the
corresponding contribution to T 0

0 at 1st order is simply ��.0/ı. For photon, f D f .0/ �

p.@f .0/=@p/�, so,

T 0
0.photon/ D �2

Z
d3p

.2�/3
p

�
f .0/

� p
@f .0/

@p
�

�
D �� .1 C 4�0/:

The factor 4 in the last expression can be easily understood from the relation � / T 4. For
neutrino, we have the similar result T 0

0.neutrino/ D ���.1 C 4N0/. So the 00 component of
the 1st-order perturbed Einstein’s equation reads,

6H 2	 � 6H
@˚

@t
C

2

a2

@2˚

@xk@xk
D �8�G

�
�dmı C �bıb C 4� �0 C 4��N0

�
:

In conformal time and in k-space, this becomes,

k2˚ C 3
Pa

a

�
P̊ �

Pa

a
	

�
D 4�Ga2

�
�dmı C �bıb C 4� �0 C 4��N0

�
: (44)

Then we consider the traceless and longitudinal part of the ij -component of Einstein’s equa-
tion, which can be picked out by projector @i @j =r2 �

1
3

ıij . The l.h.s. reads,� @i @j

@k@k

�
1

3
ıij

�
Gj

i D �
2

3a2

@2.˚ C 	/

@xk@xk
:

The r.h.s. contains T i
j , which can be projected in k-space as,�

Oki
Okj �

1

3
ıij

�
T j

i D
X

i

gi

Z
d3p

.2�/3

p2�2 �
1
3
p2

Ei .p/
.1 C 2	/fi . Ep/:

Now the integrand contains .�2 �
1
3
/ D

2
3
P2.�/, so only quadrupole contributes. But only the

perturbations of photon and neutrino have quadrupole components, so, for photon,�
Oki

Okj �
1

3
ıij

�
T j

i .photon/ D � 2

Z
dp

2�2
p4 @f .0/

@p

Z 1

�1

d�

2

2P2.�/

3
�.�/

D 2 �
2�2

3

Z
dp

2�2
p4 @f .0/

@p
D �

8

3
�.0/�2:

So the needed equation, written again with conformal time, is,

k2.˚ C 	/ D �32�Ga2
�
� �2 C ��N2

�
: (45)

The above two equations, (44) and (45), do form a complete set of equations for two scalar
perturbations of the metric. However, for completeness and also for future application, we derive
the 0i -component of Einstein’s equation. In k-space, we multiply Oki with the 0i -component of
the energy-momentum tensor, which yields,

Oki T 0
i D ga

Z 1

0

dp

2�2
p

Z C1

�1

d�

2
�.1 C 	 C ˚/f .p; �; t/:
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As expected, only dipoles of distribution f survive the integration, which are of 1st order. There-
fore the factor .1 C 	 C ˚/ can be dropped, and we get,

Oki T 0
i D a

�
�v C �bvb C 2i

Z 1

0

dp

2�2
p4 d

dp

�
f .0/

 �1 C f .0/
� N1

��
D a

�
�v C �bvb � 4i� �1 � 4i��N1

�
:

Substitute this into the Einstein equation, we have,

2ik
d˚

dt
� 2ikH	 D 8�Ga

�
�v C �bvb � 4i� �1 � 4i��N1

�
Rewriting with conformal time �, we finally get,

P̊ �
Pa

a
	 D

4�Ga2

ik

�
�v C �bvb � 4i� �1 � 4i��N1

�
: (46)

3.2.2 Tensor perturbation

3.3 Initial condition

In previous subsections we developed a complete set of equations for perturbations. To solve
them, we still need initial conditions. This involves physics at earlier time, much earlier than re-
combination or radiation-matter equality. We will see in this subsection that by studying physics
at earlier time, we can relate initial values of different components by some equalities, so that
all initial conditions are finally reduced to the initial condition for spatial curvature perturbation
˚ . However, the initial condition for ˚ cannot be determined in traditional big-bang cosmology.
One can only accept it, or appeal to some conjectured theory at much higher energies such as
inflation theory.

Recall that we have 9 variables for scalar perturbations, including � and �P for photon, N
for neutrino, ı and v for (DM-dominated) matter, ıb and vb for baryonic matter, and finally, ˚

and 	 for metric.
At early times, most modes we are interested with are outside the horizon, namely k� � 1.

In equations for matter perturbations (42), terms like P� are of order �=�, and is much larger than
terms like k�. So all similar terms multiplied by k can be neglected. For the same reason, the
photon and neutrino perturbations are nearly smooth and isotropic within a causally connected
region, so all of their higher moments can be neglected, leaving zeroth monopoles only. These
considerations imply,

P�0 C P̊ D 0; PN0 C P̊ D 0; Pı C 3 P̊ D 0; Pıb C 3 P̊ D 0: (47)

Then we turn to Einstein’s equation. At early times k2 term and matter energy densities can be
dropped from (44), which then becomes,

Pa

a

�
P̊ �

Pa

a
	

�
D

16�G

3
a2

�
� �0 C ��N0

�
:
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At early times radiation dominates, and thus a �
p

t ) a � � ) Pa=a D 1=�, so we have,

1

�

�
P̊ �

	

�

�
D

16�G

3
a2

�
� �0 C ��N0

�
D

16�G�

3
a2

�
�

�
�0 C

��

�
N0

�
:

Meanwhile we have H D a�1da=dt D 1=.a�/, and thus the Friedmann’s equation .a�/�2 D

8�G�=3. Substituting this into the r.h.s. of above equation, we have,

� P̊ � 	 D 2
h
.1 � f�/�0 C f�N0

i
;

where we have defined f� � ��=.� C ��/ to be the fraction of neutrino energy density from
total radiation. Now taking derivative of this equation with conformal time, we get,

P̊ C � R̊ � P	 D �2 P̊ :

Now we use (45), which states that 	 D �˚ if quadrupole can be neglected. This is true for
photon because photon’s quadrupole is highly suppressed due to Compton scattering. However,
neutrino’s quadrupole may not be negligibly small and may give some corrections. Setting this
issue aside, we simply take 	 D �˚ in the following, so that the above equation becomes
� R̊ C 4 P̊ D 0. We immediately get two modes, ˚ D const. and ˚ D ��3. The latter is a
decaying mode, so is not important. The former, on the other hand, is a constant, and can carry
the initial conditions for perturbations of our universe. Then we have,

˚ D 2
h
.1 � f�/�0 C f�N0

i
;

which means �0 and N0 are also constants. Usual mechanisms generating these modes do not
distinguish between photon and neutrino, so we will set �0 D N0 at early times, and thus,

�0.k; �ini/ D N0.k; �ini/ D
1

2
˚.k; �ini/: (48)

For massive particles, using (47), we have ıi D 3�0Cconst. where i can be either DM or baryon.
For so-called adiabatic perturbations, these constants are zero. The adiabatic perturbation is such
that the ratio of number densities ndm=n is constant in both space and time. Note that

ndm

n

D
n

.0/
dm

n
.0/


1 C ı

1 C 3�0

D
n

.0/
dm

n
.0/


�
1 C ı � 3�0

�
;

where the prefactor of zeroth order is indeed a constant in space and time. Thus the whole ratio
is a constant only when ı D 3�0. This is the initial condition we will use in the following. There
are also non-adiabatic initial conditions, namely the so-called isocurvature perturbations, which
we won’t consider here. Thus, for DM and baryons, we have,

ı.k; �ini/ D 3�0.k; �ini/; ıb.k; �ini/ D 3�0.k; �ini/: (49)
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4 Inflation Theory

5 Evolution of Matter Distribution

In previous sections we have derived the dynamical equations governing the evolution of
perturbations. From now on we are going to solve them. In this section we will concentrate on
matter distribution, dominated by DM. In next section we will study CMB anisotropy.

The basic picture is as follows. The matter perturbations begin to evolve with time after
entering the horizon. The larger the scale of perturbation, the later it enters the horizon. It
is expectable that entering the horizon before or after the epoch of radiation-matter equality aeq

makes a big difference. Basically, for large modes entering the horizon after aeq, the gravitational
potential ˚ will evolve smoothly to a constant value; for small modes entering horizon before
aeq, they feel the effect of hot photons right after entering the horizon, and thus begin to oscillate,
which are gradually damped, and finally reach a constant.

Although gravitational potential ˚ reaches constant on both large and small scales, the matter
density contrast ı begin to increase due to the attractive potential ˚ . Then it reaches nonlinear
regime, and finally forms galaxies, as the large scale structure we see today.

6 Cosmological Microwave Background
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