Nonlinear Realization of Global Symmetries

Zhong-7Zhi Xianyu*

Institute of Modern Physics and Center for High Energy Physics,
Tsinghua University, Beijing 10008/

September 24, 2013

Abstract

1 Introduction

The concept of symmetry is of central importance in modern physics. Plenty information can
be extracted from the symmetry of a physical system. In field theory, the symmetry plays an
essential role in defining some very basic concept like particle, charge, etc. Symmetry also put
strong constraint on the properties of fields/particles, as well as their interactions and correlations.

In quantum field theory, Wigner’s theorem tells us that symmetry transformations act as uni-
tary or anti-unitary operators acting on the Hilbert space. Under the action of symmetry operators,
states in Hilbert space are arranged into representations (or more rigorously, projective representa-
tions) of the symmetry group G. There are basically two ways of symmetry realization in Hilbert
space. One is such that the vacuum state is invariant under the action of all symmetry transfor-
mations, which is known to be the Wigner-Weyl realization, the other contains degenerate vacua,
which can transforms into each other under some of the symmetry transformation. This is known
as Nambu-Goldstone realization.

It can be shown that in the Wigner-Weyl realization, excited states above vacuum in Hilbert
space are organized into linear representations of the symmetry group. Furthermore, the field
operators corresponding to these states lie in the same linear representations. Thus, from the
viewpoint of fields, we may say the symmetry is linearly realized in Wigner-Weyl realization. On
the other hand, in Nambu-Goldstone realization, the vacua are invariant only under the action of
a subgroup H of full symmetry group G. When acting a group element outside H on a vacuum
state, it will move to another vacuum. Intuitively, if this action is applied locally, i.e., with differ-
ent group elements on different spacetime points, a special massless excitation will be generated,
which is called the Goldstone mode. The existence of Goldstone modes Nambu-Goldstone realiza-
tion is established by the famous Nambu-Goldstone’s theorem. Besides Goldstone modes, there
can of course be other particle states in the theory. However, the states within the same repre-
sentation of the full symmetry group G may have different mass. Thus we see that the spectrum
of Nambu-Goldstone realization is very different from Wigner-Weyl realization. Meanwhile, the
field operators corresponding to these states (both Goldstone modes and other particles) do not
form linear representation of G. Therefore we may say the symmetry is nonlinearly realized in
Nambu-Goldstone realization.
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In the language of Lagrangian formulation of field theory, symmetry is reflected in the invariance
of action S under the action of group G, no matter it is realized linearly or nonlinearly. For linear
realization, the construction of such action is relatively simple: one can easily build a G-invariant
Lagrangian . with covariant field operators'. For nonlinear realization, the construction becomes
far more nontrivial. In this note, we will study the construction of low energy effective theories
with nonlinearly realized symmetry.

The standard method for constructing G-invariant Lagrangian with nonlinear realization is
known as coset construction. The name is because, as we will see in the following, the Goldstone
modes can be identified as points in the coset space G/H where H is the linearly realized subgroup
of full symmetry G.

2 Coset Construction for Global Internal Symmetries

As a first step, we consider nonlinearly realized global internal symmetries in this section. From
this statement it is clear that we will assume manifest Poincaré symmetry of spacetime.

2.1 General formulation

Consider the theory with symmetry described by a semi-simple and simply connected Lie group
G, and with a sub-Lie group H of G being linearly realized. The claim of coset construction is
that the Lagrangian of the theory is constructed from Goldstone fields and other fields linearly
representing H. The Goldstone fields in this case are bosonic functions of spacetime points, and
taking values in the coset space G/H. In the following, only local properties of Lie groups are
relevant, thus we can consider the corresponding Lie algebra instead. Let the Lie algebra corre-
sponding G and H be g and b, respectively. We denote a set of independent generators in h by
V® with a = 1,--- ,dimb. Then, a basis of g can be formed with V¢ and remaining independent
generators A’ where o = 1,---dimg — dimh. The basis can always be chosen to be orthonor-
mal and such that the structure constants are totally antisymmetric, namely tr (VV?) = §9,
tr (A°A7) = 67, and tr (V?A?) = 0. Furthermore, [V, V] = ifebeve [Al AT] = ifik Ak 1 fiiay/e
and [V@, AY =ife AT

The Goldstone fields n* = 7(z), as claimed, parameterize the coset space. Therefore, we may
write a representative element U(w) in G/H to be

U(r) = ™A, (1)

Under the left action of an element g € G, U(n) will in general not be in of the form ™4, but
develop V-dependent terms in the exponent. Therefore, to bring gU(w) back to the standard
parameterization above, we need a compensating transformation h = h(g,n) acting from right,
which depends on both the group element g and the Goldstone field 7. Note that 7! = 7%(z) is a
function of spacetime, so is h(g, 7). As a result, we have

g: Ur) = U(#) = gU(m)hi(g, 7). (2)

In fact, the G-invariance of action S does not imply the G-invariance of ., but only a G-invariant .Z up to a
total divergence. This is a very interesting issue in itself. However, we will ignore this possibility for most of the
following study
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This expression determines the transformation behavior of Goldstone fields 7. It is in general
a complicated nonlinear transformation law. As group realization, we need this transformation
to be associative, and the identity element in ¢ is trivially represented. That is, we demand
h(g291,7) = h(g2,7(g1,7))h(g1,7) and h(1,7) = 1. In particular, the linear realization of H
requires the compensating transformation h(g, ) satisfying h(h,7) = h for all h € H, so that
h: U(w) = hU(m)h!, which implies

h:mtA - 7th ARl = 7DV (h) AJ. (3)

That is, h(h,7) has no m-dependence, and 7° field transforms linearly under the action of H.
The analysis above shows that the action of symmetry group G on U(m) is realized by a global
and linear left action, together with a nonlinear local transformation through h(g,7) € H. In
particular, the right action of H becomes global and linear when g € G. It can be imagined that the
transformation behavior of 7* fields is quite complicated, but it is hopeful to use U(x) to construct
G-invariant quantities. Clearly, such quantities must contain differential forms, since otherwise
the only invariant will be UTU, which is a constant. Therefore, we should consider quantities
such like dU. However, one immediately see that dU is not covariant, and transforms under G-
action as dU — gdUh' 4+ gUdh' since the right action A is local. The solution to this problem is
familiar, we simply introduce a gauge connection 1-form A, so that the 1-form dU —iUA = DU
transforms covariantly, namely, DU — gDUAT. Furthermore, since h(g,7) depends on spacetime
coordinates through 7' field, it is reasonable to imagine that the gauge connection 1-form A
can also be constructed from 7’. An elegant way of this construction is to consider the 1-form
w = —iUT(7)dU(7), known as Maurer-Cartan form in mathematics. It is straightforward to see
that w transforms as
w — hwh! — ihdhT, (4)

just in the way we want. Being a 1-form in the dual space g* of the original Lie algebra g, the
Maurer-Cartan form can be decomposed in the dual basis {V,*, A¥} of g*, or simply the generator
basis {V¢, A%} of g through the identification of Killing form, as

w=wy +ws=wlV+why AL (5)

Then the longitudinal (V) and transverse (A) part of Maurer-Cartan form transform as a gauge
connection and a linear representation, respectively. That is, wy — hwyh! — ihdh! and waq —
hwah'. Hence wy is simply the needed gauge connection 1-form A. More explicitly, suppose
the theory also contains a field variable v, which transforms linearly under H as ¢ — D(h).
Then the G-action on 1 can be realized nonlinearly through h = h(g, ) to be ¥ — D(h(g,m)).
As a consequence, the original global symmetry transformation h is promoted to a local one,
and the corresponding gauge connection is just given by wy. One can easily check that Dy =
(d+iw{, D(T*)) transforms covariantly. In particular, the object w4 contains exactly the covariant
differential of U(r), that is, wq = —iUT(7)DU (). Indeed,

—{UTDU = iU (AU - iUwy) = w — wy = wa. (6)
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2.2 Uniqueness of nonlinear realizations
2.3 Example 1: SU(2) — U(1)

As the first illustration of coset construction, we consider a toy model with global internal
symmetry SU(2) — U(1). The SU(2) group is generated by three generators 7; (i = 1,2,3)
satisfying the commutation relation:

(13, T;] = i€ Ty (7)

Let T3 be the generator of the linearly realized U(1) subgroup. Then the two dimensional coset
space SU(2)/U(1) can be parameterized by variables 7 (a = 1,2) in the standard way, ¢™ 7o =
ei(”1T1+”2T2), while the group SU(2) can be parameterized as €™ Teei?73, We will allow 7¢ = 7%(x)
to be functions of spacetime coordinates, more rigorously, we are actually considering the coset
bundle over the spacetime manifold. The fields 7%(z) will play the role of Goldstone field in
the effective Lagrangian formulation. To find out how they transform under the group action

g € SU(2), we note that the coset variable U(r) = €™ Ta transforms under the left action of g as
U(r) — gU(m)h(m, g), (8)

where h belongs to the unbroken U(1) and is necessary because gU (7) is in general not of the form
i Ta

A crucial observation of coset construction is that the Maurer-Cartan form w = —iU ! (7)dU ()
transforms under the left action of g € SU(2) according to

w = h™!(m, g)wh(m, g) — b~} (m, g)dh(, g). (9)
This Lie-algebra valued 1-form can always be expanded in terms of generators,
w=wiT, +wyTs. (10)

Therefore we see that the transverse part w4 transforms covariantly under a local transformation
h € U(1) (local in the sense that it depends on spacetime coordinates implicitly through its
dependence on 7%), while the longitudinal part wy transforms as a connection. Therefore, wy can
be used as a building block of the effective Lagrangian.

On the other hand, there could also be some fields, say v, in the Lagrangian that realize
the unbroken U(1) linearly, namely, v transforms under a linear representation of h € U(1),
1 — D(h)1y. In order that this piece also realize the whole SU(2) symmetry (though nonlinearly),
we promote this transformation to a local one, 1) — D(h(7r, g))w. Then the needed connection due
to the local transformation is provided by wy .

For SU(2)/U(1), we parameterize an infinitesimal group element to be g = €¢"ZaeT3 and
ioTs

the compensating local transformation can be written as h = e Then expanding all these

quantities up to linear order in group generators, we have
14+i(7% + 07T, = (1 41Ty (1 + inT3) (1 + in°T.) (1 + i0T3). (11)
Then up to the first nontrivial order, we have

omt =&t + 2n?, on? = &% — apr!, o=—n+&n? -t (12)
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Now we calculate the Maurer-Cartan form explicitly. With U () = el(™ T14+7°%2)  we have

. (=)
dU(ﬂ') _ 61(7T1T1+7r2T2) Z ( ad ﬁraTa (in)dﬂ'b. (13)
— (n+1)!

It is straightforward to show that

ad g, (1) = i( = [7[%)""" (= (72?1 + 7' 7T, 14
ad 217! (iT1) = i( — |=[?)" ' = T3, 15

(14)
(15)
(16)
ad iz, (iT3) = = i( = [n*)" "' T, (17)

in which n > 1 and |r| = \/(7!)! + (72)2. Then the series can be summed into a closed form, and
we get finally

we | (1= TSl o g (lrl=singTd o el gy
|3 |3

i [( || — sin |7 7717r2>d7r1 4 <1 _ || — sin |7 (771)2>d712} T

||
m2dnt — 7r1d7r2)T3. (18)

Now that we have found the explicit form of w9 and wy, we can use them to construct effective
Lagrangian. Firstly, the kinetic for the Goldstone fields 7 is given by the term w$ A w9 A e’ N e,
where e is the spacetime vierbein 1-form. This term gives

1 || — sin [m| 222 e, 1 || — sin [n| 122 22
s (1- P e ) @ty 5 (1- P e ) o)

1 (x| —sinjm| ;| 5 ? 1,2 242 7? —sin® 7] 4 5, 4 2
+ 2<|7r\37T T ((@ﬂr )"+ (0u77) > + Tﬂ' T2, Ot (19)
Now let’s have a close look at this term for small 7. At the leading order, we have the correct

kinetic term

1
Lo, (20)
Then, at the order of 7*, we have,
1 2
- E(ﬂja;ﬂrl —mto,m?)". (21)

For a Dirac spinor ¢ transforms under the fundamental representation of SU(2), we can write
down the kinetic term to be

2.4 Example 2: strong interaction at low energies
3 Nonlinearly Realized Spacetime Symmetries

3.1 General formulation

The basic strategy for constructing theory with nonlinear spacetime symmetry is similar to the
case of internal symmetry. But there are two new features. One is that the spacetime coordinates
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z# transform under spacetime translation P* nonlinearly. Indeed, the coordinate shift z# —
z#* + a* looks like Goldstone bosons under broken symmetry transformation. Thus we should in
any case treat the translation P* as broken generators. Then the spacetime itself can be viewed as
the coset space 1S0(3,1)/SO(3,1), namely, Poincaré/Lorentz?. Another new feature is that the
number of independent Goldstone fields 7* can be smaller than the number of broken generators,
a phenomenon we all familiar with. For instance, when conformal symmetry spontaneously breaks
to Poincaré symmetry, the system usually has only 1 Goldstone mode, namely the dilaton, while
there are 5 broken generators — 1 dilatation plus 4 special conformal transformations. Roughly
speaking, the mismatch is because the formulation of Goldstone field in coset space needs localized
symmetry, and spacetime symmetries would mix with each other when localized.

Let the full (spacetime+internal) symmetry group be G, and we assume that 1SO(3,1) is an
unbroken subgroup of G. We denote broken generators of G by A’, translations by P*, Lorentz
transformations by J*¥, and the rest of unbroken generators by V. Once again, the coset space

can be parameterized by _ _
Ulr,z) = @l ™ @A (22)

The left G-action on U(w, z) then reads

g: Uln(x),x) = gU(r' ('), 2")h" " (g, 7(2)), (23)

where h = h(g, 7(x)) belongs to the unbroken group?, and can be parameterized by el**V* giwn/*"/2,
As for the internal symmetry, we still require that h = h(g, 7(x)) to keep the group product rule,
and that h(h,7(z)) = h. In particular, for ¢ € I50(3, 1) with Poincaré transformation parameter
(A,a) such that z’* = AH, 2" + a*, we have g : U(m,z) = gU(m,x)g~! = U(x'(2'),2') with
7''(2') = DY(g)mI(z) and D¥(g) belongs to a linear representation of Poincar’e group. Thus the
Goldstone field transforms linearly under the action of Poincaré group, a direct consequence of the
fact that Poincar’e group is unbroken.

To construct invariants, we turn to Maurer-Cartan form again, which is now given by

w=—iU(m,z)dU(m,z) = wp + wj + wy + w4
= Wb Py + 2wl T + Wi Ve + Wy AL (24)

From the transformation law of U(m, z) we can deduce the behavior of Maurer-Cartan form under
the G-action. In terms of components, it can be represented as

wp — hwph™1, wa — hwah™t, wy +wy — h(wy +wy)h ™t + hdh L (25)

Again, the components corresponding to “broken” generators transform covariantly, while the
components corresponding to “unbroken” transforms like gauge connections. The expression above
shows that wp and wy transform independently, which is based on assumed commutation relations
such as [J,A] ~ A, [V,A] ~ A and [P, Z] ~ P. The first two commutators represent simply the
fact that broken generators form linear representations of unbroken symmetries. The third one
may not be true in general.

2When we mention symmetry group like Poincaré group or Lorentz group, we always mean its connected compo-
nent containing identity.

3Note that g and h may not be Unitary in general since Lorentz group is noncompact. Thus we write h~! instead
of ht.
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As a consequences of this analysis, we can use wp and wz to construct invariant Lagrangian.
The 1-form wp is particularly useful, because the coordinate 1-form dz* is no longer a covariant
quantity under broken symmetry transformations. Then wp can be used as a substitute of dz* to
construct invariant measure. That is, instead of d*z, we use du = wh A w% A wd A w} to construct
the action, together with an invariant Lagrangian. We can also write wl‘é = et,dx¥ and regard e*,
as a sort of vierbein. Then the invariant measure is given by ed*z where e = det(e”,).

More explicitly, we note that the covariant derivative of Goldstone fields, as in the case of
internal symmetry in last section, can be extracted from w4, while for any field v transforms
linearly under the unbroken symmetry, the covariant derivative D1 can be constructed as

» 1
Dy = |d 4wy, D(V;) + Ew‘j”D(J,W) 1. (26)
However, we note again that the Lorentz components of this covariant derivative should be de-
composed in terms of wh, rather than dz#. That is, instead of “Diy) = dz#D,¢”, we should write
Dy = wiD,1p. We will make this point more transparent by considering a specific example in the
following.

3.2 Inverse Higgs constraint

Before going into examples, however, we should discuss a phenomenon special to broken space-
time symmetries. That is, the number of independent Goldstone fields may not be equal to the
number of broken generators. The simple counting rule of Goldstone modes fails when the theory
doesn’t meet the conditions required by the Goldstone theorem. Basically, the original Goldstone
theorem holds only for global internal symmetry breaking with the manifest Poincaré symme-
try. Turning off any of the three conditions could affect the statement of the theorem. For local
symmetry, there will be massive gauge bosons rather than massless Goldstone modes, namely the
famous Higgs mechanism. For nonrelativistic case, we have the famous examples of phonons from
broken translation and rotational symmetry and spin waves from broken SU(2) spin symmetry.
Actually there will be no rigorous distinction between spacetime symmetry and internal symmetry
in this case. Last, for the spacetime symmetry broken, we have the example of dilaton for broken
conformal symmetry as mentioned above. Therefore, to generalize Goldstone’s theorem needs a
careful study of each of three cases. Here we focus on the case with broken spacetime generators
but with manifest Poincaré symmetry.

The physical picture of the mismatch between the number of Goldstone modes and the number
of broken generators can be easily illustrated. Suppose the vacuum contains a one-dimensional
string lies in a straight line = 0 on the two-dimensional (z,y)-plane. Then the vacuum breaks
z-translation and rotation symmetries. However, we will have only one phonon mode instead of
two. The reason is clear: we have said that a Goldstone mode can be seen as a localized symmetry
transformation generated by broken generators. Here we have two broken generators: the rotation
and the z-translation. Now we perform a local rotation to a small interval on the string. But one
can equally view this transformation as a local translation in z direction.

From the viewpoint of low energy effective theory, the mismatch comes from the fact that the
equations of motion for some of Goldstone fields derived from low energy effective Lagrangian are
not dynamical, but are algebraic only. Thus one can eliminate corresponding Goldstone fields by
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solving the equations of motion. In many cases, however, one can avoid such algebraic equations of
motion from the very beginning in coset construction by introducing the inverse Higgs constraint.
To be clear, suppose there are two broken generators A! and A2 related to each other by the
commutator [P*, Al] = ic# A% 4 ... where ¢ is a vector-valued constant. Then let’s compute a
component "%24 of the Maurer-Cartan form. To leading order, the most obvious contribution is
from —ie 1™ A% ¢—im P e Peim®A? which gives dm?A2. Now the commutator [P*, Al] = ic" A2 +

indicates that there is another piece of contribution from —jemim Al g—iz-Pgeia-Point Al By using
the formula
Apia _ o (D"
e 1 Be = Z oy ad i B, (27)
n=0 )
we see that this term gives c,ﬂrldx“. Thus we see that
2 v 2 1 I
wi = (6" 0" +cym + -+ )de (28)
Now if we set w124 = 0. Then 7! can be solved algebraically. This is an example of inverse

Higgs constraint. More generally, if two broken generators are related by a commutator involving
momentum P* in the way described here, one can impose the inverse Higgs constraint to set
some components of the Maurer-Cartan form to zero, and then solve for redundant Goldstone
parameters. We will illustrate this point explicitly in next subsection. Here we only note that
the condition wf4 = 0 is a G-invariant constraint since we know that wf4 — hwilh_l under G-
transformation.

3.3 Example 1: conformal to Poincaré

As a first application of coset construction for spacetime symmetries, we consider the system
with conformal symmetry spontaneously broken to Poincaré symmetry. The conformal symmetry
in (3 + 1)-dimensional spacetime is described by SO(4,2). The nonvanishing commutators of the
corresponding algebra are,

[Jm/ Jpcr] 1( mp o _ nMUJVP _ nVﬂJua + nwf(]up)’ (29)
[, PY] = —i(g" PV — 0 PP, (30)
[, K = 1( PAKY — K", (31)
(D, P*] = (32)
[D, K] = 1K“ (33)
[KH, PY] = — 2i(J* — n"* D), (34)

where D is the generator of dilatation and K* are generators of four special conformal transforma-
tions. These five generators are all broken generators. From [K, P] ~ D, we see that it is possible
to introduce the inverse Higgs constraint wp = 0. But before that, we should first compute the

. N wp i en
Maurer-Cartan form. Here we parameterize the coset space by U (7, T, z) = e*" Fuel™P ™ Ku  One

i Py pi(m D+ K )

may also consider other parameterization such as e This is merely a matter of

gauge choice. Now, under our parameterization, the Maurer-Cartan form can be computed to be

1
w=—U"dU = WP, + w5 Ju +wpD + Wi Ky, (35)
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where

wp = e"dat,
wh” = —2e™(7tda” — 77 dat),
wp = dm + 2e"7dx,,

whe = df# + 7hdm + €™ (2747 — 7265 da.

Now it is obvious that we can introduce the inverse Higgs constraint wp = 0, which gives

1
h = —56_”3"7& (40)

Then we can use this constraint to eliminate 7 from the Maurer-Cartan form, and the resulted low
energy theory contains only one Goldstone mode, namely the dilaton field . For any other Lorentz
tensor @ lying in representation D of Lorentz group, we can construct its covariant derivative via

1w
WD, ® = [d + b D(J,W)} o. (41)

It is ready now to construct the conformal invariant low energy Lagrangian. At lowest order in
dilaton’s derivative, we have

So:Mg/w?;/\w};/\w%/\w?g:Mé/d4$e4”. (42)
At the second order in 9,7, we can make use of wh to construct the kinetic term,
M2
S :MQ/w?(/\wll;/\w%/\w%: 2/(?14.%62”(6“7()2. (43)

At the fourth order, one can consider the form w9 A w}; A wh A wp, and also fuwh A (w).

In practice, it is more convenient to construct the Lagrangian directly from the “metric” g,, =
euo‘eyﬁ Naf = 62”77,“,. One can construct all “diffeomorphism” invariant quantities from this metric
as in general relativity. For instance, one can find in this case the Ricci tensor R, to be

R, = 20,m0,m — 20,0,7 — Omny, — 2(37r)217#,,, (44)

and the curvature scalar R = —6((97)? + Or). Then the Lagrangian is simply given by operators
like /—gR, /—gR?, \/—gR,,R", etc. Note that the indices here are lowered and raised by g,.
and its inverse. This resembles very much the formulation of general relativity. However, we note
that the physical degree of freedom is only the spin-0 dilaton, thus is of course not a gravitational
theory. The apparent diffeomorphism invariance of the theory is simply a nonlinear realization of
conformal symmetry. Indeed, this is not quite the full diffeomorphism invariance since the form of
the metric tells us that we are actually dealing with “conformal flat” theory only.

3.4 Example 2: general relativity

Maybe the most interesting application of the coset construction on global spacetime symmetry
is to consider the breaking pattern of affine group to Poincaré group, because the corresponding
low energy theory at leading order has precisely the form of general relativity.
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The affine symmetry group is a semidirect product of the general linear group GL(4,R) and
the translation group R* The nonzero commutators of the corresponding algebra are given as

follows,
[JHV | JPT] = — i(nlP JVT — phe JVP — PP JHT 4 v JHP). (45)
[JH TP7] = — i(gHPT"" + gl T"P — ’PTHT — /O THP), (46)
[T, TP7] = i(ntP TV 4 nho JVP + 0P JHT 4 0¥ JHP), (47)
7, PY) = i P — PR, (48)
[T", PY] = — i(n**P¥ — " P*), (49)

where all 7’s are broken generators. Treating momenta P’s in equal footing with 71’s, we can
parameterize the coset space as usual, by U(m,z) = @ Fe™T where the inner product m - T =
%7#“’ T),. Then, with the commutation relations listed above, we can derive the Maurer-Cartan

form w = —iUdU, to be

1
w=whP, + W T + 5w§fyTW, (50)
with
1 1
wh = e, M'da”, wh? = 5[671,(16]/’”/, Wi = —E{efl, de}t. (51)

where e, = [exp(iTr - Dy (T))Lw, and Dy denotes vector representation. More explicitly,

Dy (J")ap = (864 — 848%), Dy (T )ag = i(8154 + 646%).

Therefore wh, provides the needed vierbein 1-form, w4 gives the covariant derivative for Goldstone

fields, by
1, - _
Dym(z) = _5(6 1),\’){6 1,8,)6}“”, (52)
and wﬁ” provides the gauge connection to form covariant derivative for any field ® transforms

linearly under Lorentz group:

_ 1
D ®(z) = (e 1) 0,® + SN ®, (53)
where wy,,,, is defined via (wy),, = wf;wAW and can be solved to be wy,, = —%(e_l),\p[e_l, 0p€] -

However, the choice of this gauge connection is not unique; any quantity transforming corrected
and ensuring the covariance of derivative of ® can do the job. For the reason that will be clear in
the following, it is particularly instructive to redefine the gauge connection, by

1, _ _
Wiy = — 5(6 1))\’)[6 1,8pe]m, — Dymn + Dympn

1 _ _ 1 _ _ 1 _ _
:_5(6 1)>\p[e 176/)6];”/4‘5(@ 1)up{€ 1a8p€}v>\_§(e 1)Vp{€ 1,8,)6}“,\. (54)

Now we are ready to construct the effective Lagrangian with covariant quantities like w/, Dy,
D, ®, etc. However, an alternative way of constructing the Lagrangian is to begin from the covariant
quantities with manifest geometric meanings. That is, we begin from any Lorentz covariant tensor,
and augment it to be a GL(4, R)-covariant quantity, by contracting each Lorentz indices with one
vierbein factor. For instance, for a Lorentz vector V¢, we can form a GL(4,R)-vector V# through
Vi = (e71)#, V. In particular, we have a generally covariant metric tensor g,, = euo‘eyﬁnaﬁ.

10
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