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Abstract

1 Introduction

The concept of symmetry is of central importance in modern physics. Plenty information can

be extracted from the symmetry of a physical system. In field theory, the symmetry plays an

essential role in defining some very basic concept like particle, charge, etc. Symmetry also put

strong constraint on the properties of fields/particles, as well as their interactions and correlations.

In quantum field theory, Wigner’s theorem tells us that symmetry transformations act as uni-

tary or anti-unitary operators acting on the Hilbert space. Under the action of symmetry operators,

states in Hilbert space are arranged into representations (or more rigorously, projective representa-

tions) of the symmetry group G. There are basically two ways of symmetry realization in Hilbert

space. One is such that the vacuum state is invariant under the action of all symmetry transfor-

mations, which is known to be the Wigner-Weyl realization, the other contains degenerate vacua,

which can transforms into each other under some of the symmetry transformation. This is known

as Nambu-Goldstone realization.

It can be shown that in the Wigner-Weyl realization, excited states above vacuum in Hilbert

space are organized into linear representations of the symmetry group. Furthermore, the field

operators corresponding to these states lie in the same linear representations. Thus, from the

viewpoint of fields, we may say the symmetry is linearly realized in Wigner-Weyl realization. On

the other hand, in Nambu-Goldstone realization, the vacua are invariant only under the action of

a subgroup H of full symmetry group G. When acting a group element outside H on a vacuum

state, it will move to another vacuum. Intuitively, if this action is applied locally, i.e., with differ-

ent group elements on different spacetime points, a special massless excitation will be generated,

which is called the Goldstone mode. The existence of Goldstone modes Nambu-Goldstone realiza-

tion is established by the famous Nambu-Goldstone’s theorem. Besides Goldstone modes, there

can of course be other particle states in the theory. However, the states within the same repre-

sentation of the full symmetry group G may have different mass. Thus we see that the spectrum

of Nambu-Goldstone realization is very different from Wigner-Weyl realization. Meanwhile, the

field operators corresponding to these states (both Goldstone modes and other particles) do not

form linear representation of G. Therefore we may say the symmetry is nonlinearly realized in

Nambu-Goldstone realization.
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In the language of Lagrangian formulation of field theory, symmetry is reflected in the invariance

of action S under the action of group G, no matter it is realized linearly or nonlinearly. For linear

realization, the construction of such action is relatively simple: one can easily build a G-invariant

Lagrangian L with covariant field operators1. For nonlinear realization, the construction becomes

far more nontrivial. In this note, we will study the construction of low energy effective theories

with nonlinearly realized symmetry.

The standard method for constructing G-invariant Lagrangian with nonlinear realization is

known as coset construction. The name is because, as we will see in the following, the Goldstone

modes can be identified as points in the coset space G/H where H is the linearly realized subgroup

of full symmetry G.

2 Coset Construction for Global Internal Symmetries

As a first step, we consider nonlinearly realized global internal symmetries in this section. From

this statement it is clear that we will assume manifest Poincaré symmetry of spacetime.

2.1 General formulation

Consider the theory with symmetry described by a semi-simple and simply connected Lie group

G, and with a sub-Lie group H of G being linearly realized. The claim of coset construction is

that the Lagrangian of the theory is constructed from Goldstone fields and other fields linearly

representing H. The Goldstone fields in this case are bosonic functions of spacetime points, and

taking values in the coset space G/H. In the following, only local properties of Lie groups are

relevant, thus we can consider the corresponding Lie algebra instead. Let the Lie algebra corre-

sponding G and H be g and h, respectively. We denote a set of independent generators in h by

V a with a = 1, · · · , dimh. Then, a basis of g can be formed with V a and remaining independent

generators Ai where α = 1, · · · dimg − dimh. The basis can always be chosen to be orthonor-

mal and such that the structure constants are totally antisymmetric, namely tr (V aV b) = δab,

tr (AiAj) = δij , and tr (V aAi) = 0. Furthermore, [V a, V b] = ifabcV c, [Ai, Aj ] = if ijkAk + if ijaV a

and [V a, Ai] = ifaijAj .

The Goldstone fields πi = πi(x), as claimed, parameterize the coset space. Therefore, we may

write a representative element U(π) in G/H to be

U(π) = eiπ·A. (1)

Under the left action of an element g ∈ G, U(π) will in general not be in of the form eiπ̃·A, but

develop V -dependent terms in the exponent. Therefore, to bring gU(π) back to the standard

parameterization above, we need a compensating transformation h = h(g, π) acting from right,

which depends on both the group element g and the Goldstone field πi. Note that πi = πi(x) is a

function of spacetime, so is h(g, π). As a result, we have

g : U(π)→ U(π̃) = gU(π)h†(g, π). (2)

1In fact, the G-invariance of action S does not imply the G-invariance of L , but only a G-invariant L up to a

total divergence. This is a very interesting issue in itself. However, we will ignore this possibility for most of the

following study
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This expression determines the transformation behavior of Goldstone fields πi. It is in general

a complicated nonlinear transformation law. As group realization, we need this transformation

to be associative, and the identity element in g is trivially represented. That is, we demand

h(g2g1, π) = h(g2, π̃(g1, π))h(g1, π) and h(1, π) = 1. In particular, the linear realization of H

requires the compensating transformation h(g, π) satisfying h(h, π) = h for all h ∈ H, so that

h : U(π) = hU(π)h†, which implies

h : πiAi → πihAih† = πiDij(h)Aj . (3)

That is, h(h, π) has no π-dependence, and πi field transforms linearly under the action of H.

The analysis above shows that the action of symmetry group G on U(π) is realized by a global

and linear left action, together with a nonlinear local transformation through h(g, π) ∈ H. In

particular, the right action of H becomes global and linear when g ∈ G. It can be imagined that the

transformation behavior of πi fields is quite complicated, but it is hopeful to use U(x) to construct

G-invariant quantities. Clearly, such quantities must contain differential forms, since otherwise

the only invariant will be U †U , which is a constant. Therefore, we should consider quantities

such like dU . However, one immediately see that dU is not covariant, and transforms under G-

action as dU → gdUh† + gUdh† since the right action h is local. The solution to this problem is

familiar, we simply introduce a gauge connection 1-form A, so that the 1-form dU − iUA ≡ DU

transforms covariantly, namely, DU → gDUh†. Furthermore, since h(g, π) depends on spacetime

coordinates through πi field, it is reasonable to imagine that the gauge connection 1-form A
can also be constructed from πi. An elegant way of this construction is to consider the 1-form

ω = −iU †(π)dU(π), known as Maurer-Cartan form in mathematics. It is straightforward to see

that ω transforms as

ω → hωh† − ihdh†, (4)

just in the way we want. Being a 1-form in the dual space g∗ of the original Lie algebra g, the

Maurer-Cartan form can be decomposed in the dual basis {V ∗a , A∗i } of g∗, or simply the generator

basis {V a, Ai} of g through the identification of Killing form, as

ω = ωV + ωA = ωaV V
a + ωiAA

i. (5)

Then the longitudinal (V ) and transverse (A) part of Maurer-Cartan form transform as a gauge

connection and a linear representation, respectively. That is, ωV → hωV h
† − ihdh† and ωA →

hωAh
†. Hence ωV is simply the needed gauge connection 1-form A. More explicitly, suppose

the theory also contains a field variable ψ, which transforms linearly under H as ψ → D(h)ψ.

Then the G-action on ψ can be realized nonlinearly through h = h(g, π) to be ψ → D(h(g, π))ψ.

As a consequence, the original global symmetry transformation h is promoted to a local one,

and the corresponding gauge connection is just given by ωV . One can easily check that Dψ =

(d+iωaVD(T a))ψ transforms covariantly. In particular, the object ωA contains exactly the covariant

differential of U(π), that is, ωA = −iU †(π)DU(π). Indeed,

− iU †DU = −iU †(dU − iUωV ) = ω − ωV = ωA. (6)
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2.2 Uniqueness of nonlinear realizations

2.3 Example 1: SU(2)→ U(1)

As the first illustration of coset construction, we consider a toy model with global internal

symmetry SU(2) → U(1). The SU(2) group is generated by three generators Ti (i = 1, 2, 3)

satisfying the commutation relation:

[Ti, Tj ] = iεijkTk. (7)

Let T3 be the generator of the linearly realized U(1) subgroup. Then the two dimensional coset

space SU(2)/U(1) can be parameterized by variables πa (a = 1, 2) in the standard way, eiπ
aTa =

ei(π
1T1+π2T2), while the group SU(2) can be parameterized as eiπ

aTaeiσT3 . We will allow πa = πa(x)

to be functions of spacetime coordinates, more rigorously, we are actually considering the coset

bundle over the spacetime manifold. The fields πa(x) will play the role of Goldstone field in

the effective Lagrangian formulation. To find out how they transform under the group action

g ∈ SU(2), we note that the coset variable U(π) = eiπ
aTa transforms under the left action of g as

U(π)→ gU(π)h(π, g), (8)

where h belongs to the unbroken U(1) and is necessary because gU(π) is in general not of the form

eiπ
aTa .

A crucial observation of coset construction is that the Maurer-Cartan form ω = −iU−1(π)dU(π)

transforms under the left action of g ∈ SU(2) according to

ω → h−1(π, g)ωh(π, g)− ih−1(π, g)dh(π, g). (9)

This Lie-algebra valued 1-form can always be expanded in terms of generators,

ω = ωaATa + ωV T3. (10)

Therefore we see that the transverse part ωA transforms covariantly under a local transformation

h ∈ U(1) (local in the sense that it depends on spacetime coordinates implicitly through its

dependence on πa), while the longitudinal part ωV transforms as a connection. Therefore, ωA can

be used as a building block of the effective Lagrangian.

On the other hand, there could also be some fields, say ψ, in the Lagrangian that realize

the unbroken U(1) linearly, namely, ψ transforms under a linear representation of h ∈ U(1),

ψ → D(h)ψ. In order that this piece also realize the whole SU(2) symmetry (though nonlinearly),

we promote this transformation to a local one, ψ → D
(
h(π, g)

)
ψ. Then the needed connection due

to the local transformation is provided by ωV .

For SU(2)/U(1), we parameterize an infinitesimal group element to be g = eiξ
aTaeiηT3 , and

the compensating local transformation can be written as h = eiσT3 . Then expanding all these

quantities up to linear order in group generators, we have

1 + i(πa + δπa)Ta = (1 + iξbTb)(1 + iηT3)(1 + iπcTc)(1 + iσT3). (11)

Then up to the first nontrivial order, we have

δπ1 = ξ1 + 2ηπ2, δπ2 = ξ2 − 2ηπ1, σ = −η + ξ1π2 − ξ2π1. (12)

4



Notes by Zhong-Zhi Xianyu Begin on 2012/12/22, last updated on 2013/09/24

Now we calculate the Maurer-Cartan form explicitly. With U(π) = ei(π
1T1+π2T2), we have

dU(π) = ei(π
1T1+π2T2)

∞∑
n=0

(−1)n

(n+ 1)!
ad n

iπaTa(iTb)dπ
b. (13)

It is straightforward to show that

ad 2n
iπaTa(iT1) = i

(
− |π|2

)n−1(− (π2)2T1 + π1π2T2

)
, (14)

ad 2n−1
iπaTa

(iT1) = i
(
− |π|2

)n−1
π2T3, (15)

ad 2n
iπaTa(iT2) = i

(
− |π|2

)n−1(
π1π2T1 − (π1)2T2

)
, (16)

ad 2n−1
iπaTa

(iT2) =− i
(
− |π|2

)n−1
π1T3, (17)

in which n ≥ 1 and |π| ≡
√

(π1)1 + (π2)2. Then the series can be summed into a closed form, and

we get finally

ω =

[(
1− |π| − sin |π|

|π|3
(π2)2

)
dπ1 +

(
|π| − sin |π|
|π|3

π1π2
)

dπ2
]
T1

+

[(
|π| − sin |π|
|π|3

π1π2
)

dπ1 +

(
1− |π| − sin |π|

|π|3
(π1)2

)
dπ2

]
T2

+
1− cos |π|
|π|2

(
π2dπ1 − π1dπ2

)
T3. (18)

Now that we have found the explicit form of ωaA and ωV , we can use them to construct effective

Lagrangian. Firstly, the kinetic for the Goldstone fields πa is given by the term ωaA ∧ ωaA ∧ eb ∧ eb,
where eb is the spacetime vierbein 1-form. This term gives

1

2

(
1− |π| − sin |π|

|π|3
(π2)2

)2

(∂µπ
1)2 +

1

2

(
1− |π| − sin |π|

|π|3
(π1)2

)2

(∂µπ
2)2

+
1

2

(
|π| − sin |π|
|π|3

π1π2
)2(

(∂µπ
1)2 + (∂µπ

2)2
)

+
|π|2 − sin2 |π|

|π|4
π1π2∂µπ

1∂µπ2. (19)

Now let’s have a close look at this term for small πa. At the leading order, we have the correct

kinetic term
1

2
(∂µπ

a)2. (20)

Then, at the order of π4, we have,

− 1

6

(
π2∂µπ

1 − π1∂µπ2
)2
. (21)

For a Dirac spinor ψ transforms under the fundamental representation of SU(2), we can write

down the kinetic term to be

2.4 Example 2: strong interaction at low energies

3 Nonlinearly Realized Spacetime Symmetries

3.1 General formulation

The basic strategy for constructing theory with nonlinear spacetime symmetry is similar to the

case of internal symmetry. But there are two new features. One is that the spacetime coordinates
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xµ transform under spacetime translation Pµ nonlinearly. Indeed, the coordinate shift xµ →
xµ + aµ looks like Goldstone bosons under broken symmetry transformation. Thus we should in

any case treat the translation Pµ as broken generators. Then the spacetime itself can be viewed as

the coset space ISO(3, 1)/SO(3, 1), namely, Poincaré/Lorentz2. Another new feature is that the

number of independent Goldstone fields πi can be smaller than the number of broken generators,

a phenomenon we all familiar with. For instance, when conformal symmetry spontaneously breaks

to Poincaré symmetry, the system usually has only 1 Goldstone mode, namely the dilaton, while

there are 5 broken generators — 1 dilatation plus 4 special conformal transformations. Roughly

speaking, the mismatch is because the formulation of Goldstone field in coset space needs localized

symmetry, and spacetime symmetries would mix with each other when localized.

Let the full (spacetime+internal) symmetry group be G, and we assume that ISO(3, 1) is an

unbroken subgroup of G. We denote broken generators of G by Ai, translations by Pµ, Lorentz

transformations by Jµν , and the rest of unbroken generators by V a. Once again, the coset space

can be parameterized by

U(π, x) = eixµP
µ
eiπ

i(x)Ai . (22)

The left G-action on U(π, x) then reads

g : U(π(x), x) = gU(π′(x′), x′)h−1(g, π(x)), (23)

where h = h(g, π(x)) belongs to the unbroken group3, and can be parameterized by eiu
aV aeiωµνJ

µν/2.

As for the internal symmetry, we still require that h = h(g, π(x)) to keep the group product rule,

and that h(h, π(x)) = h. In particular, for g ∈ ISO(3, 1) with Poincaré transformation parameter

(Λ, a) such that x′µ = Λµνx
ν + aµ, we have g : U(π, x) = gU(π, x)g−1 = U(π′(x′), x′) with

π′i(x′) = Dij(g)πj(x) and Dij(g) belongs to a linear representation of Poincar’e group. Thus the

Goldstone field transforms linearly under the action of Poincaré group, a direct consequence of the

fact that Poincar’e group is unbroken.

To construct invariants, we turn to Maurer-Cartan form again, which is now given by

ω =− iU(π, x)dU(π, x) = ωP + ωJ + ωV + ωA

= ωµPPµ + 1
2 ω

µν
J Jµν + ωaV V

a + ωiAA
i. (24)

From the transformation law of U(π, x) we can deduce the behavior of Maurer-Cartan form under

the G-action. In terms of components, it can be represented as

ωP → hωPh
−1, ωA → hωAh

−1, ωJ + ωV → h(ωJ + ωV )h−1 + hdh−1. (25)

Again, the components corresponding to “broken” generators transform covariantly, while the

components corresponding to “unbroken” transforms like gauge connections. The expression above

shows that ωP and ωA transform independently, which is based on assumed commutation relations

such as [J,A] ∼ A, [V,A] ∼ A and [P,Z] ∼ P . The first two commutators represent simply the

fact that broken generators form linear representations of unbroken symmetries. The third one

may not be true in general.

2When we mention symmetry group like Poincaré group or Lorentz group, we always mean its connected compo-

nent containing identity.
3Note that g and h may not be Unitary in general since Lorentz group is noncompact. Thus we write h−1 instead

of h†.
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As a consequences of this analysis, we can use ωP and ωZ to construct invariant Lagrangian.

The 1-form ωP is particularly useful, because the coordinate 1-form dxµ is no longer a covariant

quantity under broken symmetry transformations. Then ωP can be used as a substitute of dxµ to

construct invariant measure. That is, instead of d4x, we use dµ = ω1
P ∧ω2

P ∧ω3
P ∧ω4

P to construct

the action, together with an invariant Lagrangian. We can also write ωµP = eµνdxν and regard eµν
as a sort of vierbein. Then the invariant measure is given by ed4x where e ≡ det(eµν).

More explicitly, we note that the covariant derivative of Goldstone fields, as in the case of

internal symmetry in last section, can be extracted from ωA, while for any field ψ transforms

linearly under the unbroken symmetry, the covariant derivative Dψ can be constructed as

Dψ =
[
d + ωiVD(Vi) +

1

2
ωµνJ D(Jµν)

]
ψ. (26)

However, we note again that the Lorentz components of this covariant derivative should be de-

composed in terms of ωµP rather than dxµ. That is, instead of “Dψ = dxµDµψ”, we should write

Dψ = ωµPDµψ. We will make this point more transparent by considering a specific example in the

following.

3.2 Inverse Higgs constraint

Before going into examples, however, we should discuss a phenomenon special to broken space-

time symmetries. That is, the number of independent Goldstone fields may not be equal to the

number of broken generators. The simple counting rule of Goldstone modes fails when the theory

doesn’t meet the conditions required by the Goldstone theorem. Basically, the original Goldstone

theorem holds only for global internal symmetry breaking with the manifest Poincaré symme-

try. Turning off any of the three conditions could affect the statement of the theorem. For local

symmetry, there will be massive gauge bosons rather than massless Goldstone modes, namely the

famous Higgs mechanism. For nonrelativistic case, we have the famous examples of phonons from

broken translation and rotational symmetry and spin waves from broken SU(2) spin symmetry.

Actually there will be no rigorous distinction between spacetime symmetry and internal symmetry

in this case. Last, for the spacetime symmetry broken, we have the example of dilaton for broken

conformal symmetry as mentioned above. Therefore, to generalize Goldstone’s theorem needs a

careful study of each of three cases. Here we focus on the case with broken spacetime generators

but with manifest Poincaré symmetry.

The physical picture of the mismatch between the number of Goldstone modes and the number

of broken generators can be easily illustrated. Suppose the vacuum contains a one-dimensional

string lies in a straight line x = 0 on the two-dimensional (x, y)-plane. Then the vacuum breaks

x-translation and rotation symmetries. However, we will have only one phonon mode instead of

two. The reason is clear: we have said that a Goldstone mode can be seen as a localized symmetry

transformation generated by broken generators. Here we have two broken generators: the rotation

and the x-translation. Now we perform a local rotation to a small interval on the string. But one

can equally view this transformation as a local translation in x direction.

From the viewpoint of low energy effective theory, the mismatch comes from the fact that the

equations of motion for some of Goldstone fields derived from low energy effective Lagrangian are

not dynamical, but are algebraic only. Thus one can eliminate corresponding Goldstone fields by
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solving the equations of motion. In many cases, however, one can avoid such algebraic equations of

motion from the very beginning in coset construction by introducing the inverse Higgs constraint.

To be clear, suppose there are two broken generators A1 and A2 related to each other by the

commutator [Pµ, A1] = icµA2 + · · · where cµ is a vector-valued constant. Then let’s compute a

component ω2
A of the Maurer-Cartan form. To leading order, the most obvious contribution is

from −ie−iπ
2A2

e−ix·Pdeix·P eiπ
2A2

, which gives dπ2A2. Now the commutator [Pµ, A1] = icµA2 + · · ·
indicates that there is another piece of contribution from −ie−iπ

1A1
e−ix·Pdeix·P eiπ

1A1
. By using

the formula

e−iABeiA =
∞∑
n=0

(−i)n

n!
ad n

AB, (27)

we see that this term gives cµπ
1dxµ. Thus we see that

ω2
A = (eνµ∂νπ

2 + cµπ
1 + · · · )dxµ (28)

Now if we set ω2
A = 0. Then π1 can be solved algebraically. This is an example of inverse

Higgs constraint. More generally, if two broken generators are related by a commutator involving

momentum Pµ in the way described here, one can impose the inverse Higgs constraint to set

some components of the Maurer-Cartan form to zero, and then solve for redundant Goldstone

parameters. We will illustrate this point explicitly in next subsection. Here we only note that

the condition ωiA = 0 is a G-invariant constraint since we know that ωiA → hωiAh
−1 under G-

transformation.

3.3 Example 1: conformal to Poincaré

As a first application of coset construction for spacetime symmetries, we consider the system

with conformal symmetry spontaneously broken to Poincaré symmetry. The conformal symmetry

in (3 + 1)-dimensional spacetime is described by SO(4, 2). The nonvanishing commutators of the

corresponding algebra are,

[Jµν , Jρσ] =− i(ηµρJνσ − ηµσJνρ − ηνρJµσ + ηνσJµρ), (29)

[Jµν , P λ] =− i(ηµλP ν − ηνλPµ), (30)

[Jµν ,Kλ] =− i(ηµλKν − ηνλKµ), (31)

[D,Pµ] = iPµ, (32)

[D,Kµ] =− iKµ, (33)

[Kµ, P ν ] =− 2i(Jµν − ηµνD), (34)

where D is the generator of dilatation and Kµ are generators of four special conformal transforma-

tions. These five generators are all broken generators. From [K,P ] ∼ D, we see that it is possible

to introduce the inverse Higgs constraint ωD = 0. But before that, we should first compute the

Maurer-Cartan form. Here we parameterize the coset space by U(π, π̃, x) = eix
µPµeiπDeiπ̃

µKµ . One

may also consider other parameterization such as eix
µPµei(πD+π̃µKµ). This is merely a matter of

gauge choice. Now, under our parameterization, the Maurer-Cartan form can be computed to be

ω = −iU−1dU = ωµPPµ +
1

2
ωµνJ Jµν + ωDD + ωµKKµ, (35)
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where

ωµP = eπdxµ, (36)

ωµνJ =− 2eπ(π̃µdxν − π̃νdxµ), (37)

ωD = dπ + 2eππ̃µdxµ, (38)

ωµK = dπ̃µ + π̃µdπ + eπ(2π̃µπ̃λ − π̃2δµλ)dxλ. (39)

Now it is obvious that we can introduce the inverse Higgs constraint ωD = 0, which gives

π̃µ = − 1

2
e−π∂µπ. (40)

Then we can use this constraint to eliminate π̃µ from the Maurer-Cartan form, and the resulted low

energy theory contains only one Goldstone mode, namely the dilaton field π. For any other Lorentz

tensor Φ lying in representation D of Lorentz group, we can construct its covariant derivative via

ωµPDµΦ =
[
d +

i

2
ωµνJ D(Jµν)

]
Φ. (41)

It is ready now to construct the conformal invariant low energy Lagrangian. At lowest order in

dilaton’s derivative, we have

S0 = M4
0

∫
ω0
P ∧ ω1

P ∧ ω2
P ∧ ω3

P = M4
0

∫
d4x e4π. (42)

At the second order in ∂µπ, we can make use of ωµK to construct the kinetic term,

S2 = M2

∫
ω0
K ∧ ω1

P ∧ ω2
P ∧ ω3

P =
M2

2

∫
d4x e2π(∂µπ)2. (43)

At the fourth order, one can consider the form ω0
K ∧ ω1

K ∧ ω2
P ∧ ω4

P , and also ηµνω
µ
K ∧ (?ωνK).

In practice, it is more convenient to construct the Lagrangian directly from the “metric” gµν =

eµ
αeν

βηαβ = e2πηµν . One can construct all “diffeomorphism” invariant quantities from this metric

as in general relativity. For instance, one can find in this case the Ricci tensor Rµν to be

Rµν = 2∂µπ∂νπ − 2∂µ∂νπ −�πηµν − 2(∂π)2ηµν , (44)

and the curvature scalar R = −6((∂π)2 + �π). Then the Lagrangian is simply given by operators

like
√
−gR,

√
−gR2,

√
−gRµνRµν , etc. Note that the indices here are lowered and raised by gµν

and its inverse. This resembles very much the formulation of general relativity. However, we note

that the physical degree of freedom is only the spin-0 dilaton, thus is of course not a gravitational

theory. The apparent diffeomorphism invariance of the theory is simply a nonlinear realization of

conformal symmetry. Indeed, this is not quite the full diffeomorphism invariance since the form of

the metric tells us that we are actually dealing with “conformal flat” theory only.

3.4 Example 2: general relativity

Maybe the most interesting application of the coset construction on global spacetime symmetry

is to consider the breaking pattern of affine group to Poincaré group, because the corresponding

low energy theory at leading order has precisely the form of general relativity.

9



Notes by Zhong-Zhi Xianyu Begin on 2012/12/22, last updated on 2013/09/24

The affine symmetry group is a semidirect product of the general linear group GL(4,R) and

the translation group R4. The nonzero commutators of the corresponding algebra are given as

follows,

[Jµν , Jρσ] =− i(ηµρJνσ − ηµσJνρ − ηνρJµσ + ηνσJµρ), (45)

[Jµν , T ρσ] =− i(ηµρT νσ + ηµσT νρ − ηνρTµσ − ηνσTµρ), (46)

[Tµν , T ρσ] = i(ηµρJνσ + ηµσJνρ + ηνρJµσ + ηνσJµρ), (47)

[Jµν , P λ] =− i(ηµλP ν − ηνλPµ), (48)

[Tµν , P λ] =− i(ηµλP ν − ηνλPµ), (49)

where all T ’s are broken generators. Treating momenta P ’s in equal footing with T ’s, we can

parameterize the coset space as usual, by U(π, x) = eix·P eiπ·T , where the inner product π · T ≡
1
2 π

µνTµν . Then, with the commutation relations listed above, we can derive the Maurer-Cartan

form ω = −iUdU , to be

ω = ωµPPν +
1

2
ωµνJ Jµν +

1

2
ωµνT Tµν , (50)

with

ωµP = eν
µdxν , ωµνJ = − 1

2
[e−1, de]µν , ωµνT = − 1

2
{e−1,de}µν . (51)

where eµν ≡
[

exp(iπ ·DV (T ))
]
µν

, and DV denotes vector representation. More explicitly,

DV (Jµν)αβ = i(δµαδ
ν
β − δ

µ
βδ

ν
α), DV (Tµν)αβ = i(δµαδ

ν
β + δµβδ

ν
α).

Therefore ωµP provides the needed vierbein 1-form, ωµνT gives the covariant derivative for Goldstone

fields, by

Dλπµν(x) = − 1

2
(e−1)λ

ρ{e−1, ∂ρe}µν , (52)

and ωµνJ provides the gauge connection to form covariant derivative for any field Φ transforms

linearly under Lorentz group:

DλΦ(x) = (e−1)λ
ρ∂ρΦ +

i

2
ωλµνΦ, (53)

where ωλµν is defined via (ωJ)µν = ωλPωλµν and can be solved to be ωλµν = − 1
2 (e−1)λ

ρ[e−1, ∂ρe]µν .

However, the choice of this gauge connection is not unique; any quantity transforming corrected

and ensuring the covariance of derivative of Φ can do the job. For the reason that will be clear in

the following, it is particularly instructive to redefine the gauge connection, by

ωλµν =− 1

2
(e−1)λ

ρ[e−1, ∂ρe]µν −Dµπνλ + Dνπµλ

=− 1

2
(e−1)λ

ρ[e−1, ∂ρe]µν +
1

2
(e−1)µ

ρ{e−1, ∂ρe}νλ −
1

2
(e−1)ν

ρ{e−1, ∂ρe}µλ. (54)

Now we are ready to construct the effective Lagrangian with covariant quantities like ωµP , Dλπµν ,

DµΦ, etc. However, an alternative way of constructing the Lagrangian is to begin from the covariant

quantities with manifest geometric meanings. That is, we begin from any Lorentz covariant tensor,

and augment it to be a GL(4,R)-covariant quantity, by contracting each Lorentz indices with one

vierbein factor. For instance, for a Lorentz vector V α, we can form a GL(4,R)-vector V µ through

V µ = (e−1)µαV
α. In particular, we have a generally covariant metric tensor gµν = eµ

αeν
βηαβ.

10



Notes by Zhong-Zhi Xianyu Begin on 2012/12/22, last updated on 2013/09/24
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5 Coset Construction in Nonrelativistic Theories
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