
Symmetries of Relativistic Quantum Theories

Zhong-Zhi Xianyu∗

Center for High Energy Physics, Tsinghua University, Beijing, 100084

June 24, 2011

Abstract

In this note we review the well-known Coleman-Mandula theorem, concerning the possible

symmetries of S matrix in a relativistic quantum theory. The original proof of Coleman and

Mandula is presented. Several possible extensions of the theorem by relaxing conditions of

Coleman-Mandula theorem are also discussed, including the supersymmetric generalization.

1 Introduction

It ia an interesting question that what kind of symmetries can be adopted by a relativistic

quantum theory. By relativistic theory we mean the symmetry group should contain (at least

locally) the Poincaré group as its subgroup. Thus the question can be phrased in another way:

what is the most general form of symmetry groups of a quantum theory that locally contain

Poincaré group as a subgroup? In a variety of examples we met, the symmetries of the theory

can be separated into two classes: one described by Poincaré group which we call space-time

symmetries, the other commuting with all Poincaré generators, which we call internal symmetries.

Therefore the point of the previous question is that whether it is possible or not for a relativistic

quantum theory to adopt a symmetry being simultaneously non-space-time and non-internal. Were

this the case, loosely speaking, the space-time symmetries and internal symmetries will get mixed.

Mathematically, such a non-space-time and non-internal symmetry generator would be outside the

Poincaré algebra but have nonzero commutators with Poincaré generators. As a consequence, the

generator of such a symmetry will be tensor-like. So another way of asking the question is, if a

relativistic theory can admit a tensor-like charge besides the ones in Poincaré algebra?

The Coleman-Mandula (CM) theorem solves the problem with a negative answer, under some

quite technical assumptions. The claim of the theorem is that, the symmetry group of a relativistic

quantum theory must be a locally direct product of the Poincaré group and internal symmetry

groups. In the following, we will try to make this statement more precise, with a number of

technical details considered.

The formulation of the theorem is based on the scattering theory. Before stating it, let us first

set up the formulation and notations. In scattering theory, the Hilbert space is the Fock space

H = H (0) ⊕H (1) ⊕H (2) ⊕ · · · , (1)
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where H (n) is the subspace of n-particle states. For example, H (0) denotes the vacuum, and H (1)

is the space of one-particle states, a basis of which can be chosen to be labeled by |p, n〉, with p

the momentum eigenvalue, n the discrete labels, including spin and particle type.

The S matrix is a unitary operator in H , and a unitary1 operator U is said to be a symmetry

transformation of the S matrix, if (1) U turns one-particle states into one particles states, and acts

on multi-particle states as if they were tensor products of one-particle states; (2) U commute with

S: [U, S] = 0. The T matrix is defined in the usual way, as

S = 1− i(2π)4δ(p− p′)T. (2)

All symmetries of the S matrix form a group. We study the continuous symmetry only, and focus

solely on the path-connected component. Then symmetries of S matrix are generated locally by

an algebra, consisting of symmetry generators. The CM theorem is a claim on local properties

of symmetry group, thus it is enough for us to study the symmetry algebra only. As emphasized

in [1], the theorem does not assume the symmetry group to be a finite dimensional Lie group.

That is, it can be a priori infinitely dimensional, because the particle-finiteness assumption (see

below) automatically guarantees the resulted internal symmetry group to be a finite dimensional

Lie group.

As stated above, symmetry transformations are represented by unitary operators, thus the

corresponding generators are hermitian. Of course these hermitian generators can be defined on

the entire Hilbert space, but for our purpose, it is enough to define the generators on one-particle

and two-particle Hilbert spaces only, since we only use them in the study of 2-2 scattering processes.

Mathematically, we use D to denote the subspace of H (1) consisting of one-particle states |Ψ〉
with the momentum space wave function 〈p, j, n|Ψ〉 being test function of p. By test function we

mean a infinitely differentiable function with compact support. Then, let |Ψ1,Ψ2〉 ≡ |Ψ1〉 ⊗ |Ψ2〉
and |Φ1,Φ2〉 ≡ |Φ1〉 ⊗ |Φ2〉 be two two-particle states in D ⊗ D . Now, we assume that any

symmetry transformation in a small neighborhood of the identity is contained in an one-parameter

group described by real parameter t, that is to say, any such unitary operators can be written as

a function of t, U = U(t). Then, we can use it do define the corresponding symmetry generator in

two-particle space H (2) to be any distribution satisfying

−i
d

dt

[
〈Φ1,Φ2|g(t)|Ψ1,Ψ2〉

]
= 〈Φ1,Φ2|A|Ψ1,Ψ2〉 = 〈Φ1|A|Ψ1〉〈Φ2|Ψ2〉+ 〈Φ1|Ψ1〉〈Φ2|A|Ψ2〉, (3)

with the requirement that symmetry generators should commute with the S,

〈Φ1,Φ2|S†AS|Ψ1,Ψ2〉 = 〈Φ1,Φ2|A|Ψ1,Ψ2〉. (4)

We denote the space of all generators satisfying the two equations above by A . The matrix

elements of A between two one-particle momentum eigenstates, 〈p′, n′|A|p, n〉 will be denoted by

An′,n(p′, p), and discrete indices will often be suppressed in the following.

With the preliminaries above, we are now ready to state the CM theorem in its standard form:

1By a well-known theorem of Wigner, elements of a symmetry group are always represented by unitary or an-

tiunitary operators in Hilbert space. Since only continuous symmetries are considered in this note, all symmetry

transformations are unitary.
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Theorem (Coleman-Mandula) Let G be a connected symmetry group of the S matrix, and let

the following five conditions hold:

1. (Lorentz invariance) G contains a subgroup locally isomorphic to Poincaré group P .

2. (Particle-finiteness) For any finite M , there are only a finite number of particle types with

mass less than M .

3. (Weak elastic analyticity) Elastic-scattering amplitudes are analytic functions of center-of-

mass energy s and invariant momentum transfer t, in some neighborhood of the physical

region, except at normal thresholds.

4. (Occurrence of scattering) Let |p, p′〉 be a two-particle state form by any two one-particle

momentum eigenstates. Then T |p, p′〉 6= 0 except for some isolated values of s.

5. (Kernel as distribution) There is a neighborhood of the identity G such that every element

of G in this neighborhood lies on some one-parameter group U(t), and for any well-defined

one-particle states |Φ〉 and |Ψ〉,

−i
d

dt
〈Ψ|U(t)|Φ〉 = 〈Ψ|A|Φ〉 (5)

defines a well-behaved functional, linear in |Φ〉 and antilinear in 〈Ψ|.

Then, G is locally isomorphic to the direct product of an internal symmetry group and the Poincaré

group.

In next section, we give the proof of the theorem following [1].

2 Proof of the CM Theorem

We separate the proof into three parts. The first two parts consist of two lemmas. The first

lemma shows that matrix elements of symmetry generators between one-particle states do not

vanish only when the two one-particle states share the same momentum; the second lemma is a

partial statement of the CM theorem for generators commuting with momentum operator. Then in

the third part, we generalize the statement of Lemma 2 to the entire space of symmetry generators,

with the aid of Lemma 1.

2.1 Part 1: Symmetry generators are diagonal in momentum

Lemma 1. A(p′, p) ≡ 〈p′|A|p〉 vanishes constantly when p′ 6= p.

In particular, this lemma implies that a symmetry generator A cannot turn a one-particle state

into another one with different mass.

Proof of Lemma 1. Let f be a test function in momentum space and f̃ its Fourier transform,

with the support R assumed not to contain zero. We use f , together with a given symmetry

generator A, to construct another operator Af :

Af ≡
∫

d4aU †(1, a)AU(1, a)f̃(a). (6)
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p

p+RY

Figure 1: An illustration of the action of Af on a given mass shell. The support R of the test function f

is chosen to lie in the a small disk on the positive x axis. Then for every point p on the hyperboloid, only

points in the small disk p+R has nonvanishing matrix elements of Af together with p. As p moves in the

hyperboloid, p+R sweeps over a bold hyperboloid that intersects the original hyperboloid within the range

marked by the vertical blue strip. Then the original mass shell except the part covered by this blue strip is

the region Y .

It’s straightforward to show that operator Af is also a symmetry generator of the S matrix That

is, Af satisfies (5). Then, using the property of one-particle momentum eigenstate

U(1, a)|p〉 = e−ip·a|p〉,

we have

Af (p′, p) = 〈p′|Af |p〉 =

∫
d4a f̃(a)〈p′|U †(1, a)AU(1, a)|p〉

=

∫
d4a f̃(a)e−i(p−p

′)·a〈p′|A|p〉 = f(p− p′)A(p′, p), (7)

which shows that the matrix element of Af between two one-particle states is nonzero, only when

the momentum difference p′ − p is in the support R of f .

By the particle-finiteness assumption, the support of one-particle states in momentum space is

restricted to countable mass shells. Then, it is easy to show the following statement to be true:

there is a region Y in each mass shell such that every point in Y when added by any point in R,

will be outside any of the mass shells, provided that R is sufficiently small and does not contain

zero. As a consequence, any one-particle state with support contained in Y will be annihilate by

Af . This can be clarified by careful mathematical constructions, which we do not bother to spell

out explicitly. Instead, we illustrate the meaning of this statement in Fig. 1.

Now let’s consider a 2-2 scattering process with initial momenta p, q and final momenta p′,

q′ chosen such that p is out of Y while q, p′ and q′ are in Y , with momentum conservation

p + q = p′ + q′ satisfied. Then we see that Af must annihilate the one-particle states associated

with q, p′ and q′ but not p. Then this scattering process is forbidden by the conservation law

associated with Af and thus has vanishing S matrix element. In the rest frame of momentum

p, any rotation of the system won’t change this result, but will change the momenta q, p′ and q′

continuously. This implies that the scattering amplitude vanishes at least for a continuous interval

of center-of-mass energy s = (p + q)2, which contradicts the scattering assumption that demands

the amplitudes vanish only at isolated values of s. Thus we see that the state associated with p

must vanish, and Af will annihilate all one-particle states lying on the lowest mass shell.
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Repeat this argument to the succeeding mass shells, we conclude that Af (p′, p) = f(p −
p′)A(p′, p) = 0. Now that f is arbitrarily chosen except that its support does not contain zero, we

see that A(p′, p) must be zero except when p′ = p. This finish the proof of Lemma 1.

We note that by the distribution assumption for the kernel of symmetry generators, any

distribution in A is a polynomials in delta functions δ(p − p′) and its finite-order derivatives
∂

∂pµ1
· · · ∂

∂pµn
δ(p − p′). For the generator A(p′, p) that acts only on a mass shell, the derivatives

must be tangent to the mass shell, thus A(p′, p) must be a polynomial of tangent derivative ∇µ
given by

∇µ =
∂

∂pµ
− pµpν

m2

∂

∂pν
.

Then it’s straightforward to check that the commutator between A and squared momentum PµPµ

vanishes,

[A,PµPµ] = 0, (8)

which is a mathematical way to say that A does not affect the mass of an one-particle state.

2.2 Part 2: The subalgebra commuting with momentum is internal

The second part of the proof concerning the symmetry generators which are commuting with

space-time translation. Let B be the space of symmetry generators that commute with space-time

translations. Then the main proposition we will to prove in this part is the following:

Lemma 2. Any element in B has the form:

B = aµPµ + b, (9)

where aµ is constant four-vector, and b is a constant, being space-time scalar and Hermitian matrix

in Hilbert space.

Before proving this lemma, we at first make some remarks. Particle states form representations

of symmetry generators. That is to say, for instance, for any B ∈ B and any one-particle state

|p, n〉,
B|pn〉 =

∑
m

bmn(p)|pm〉, (10)

where bmn(p) is a hermitian matrix. For two-particle states |p1n1, p2n2〉, then, the action of B is

constructed from the action on corresponding one-particle states:

B|p1n1, p2n2〉 =
∑
n′1

bn′1n1
(p1)|p1n′1, p2n2〉+

∑
n′2

bn′2n2
(p2)|p1n1, p2n′2〉

=
∑
n′1,n

′
2

bn′1n′2,n1n2
(p1, p2)|p1n′1, p2n′2〉, (11)

where bn′1n′2,n1n2
(p1, p2) is defined by

bn′1n′2,n1n2
(p1, p2) = bn′1n1

(p1)δn′2n2
+ bn′2n2

(p2)δn′1n1
. (12)
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The action of B on general multiparticle states can be determined in a similar way. Furthermore,

the fact that B is a symmetry of the S matrix, i.e., BS = SB gives that in the two-particle space,

b(q1, q2)S(q1, q2, p1, p2) = S(q1, q2, p1, p2)b(p1, p2), (13)

where the discrete indices have been suppressed.

For convenience, note that the Assumption 4 (occurrence of scattering) says that T |p, q〉 6= 0

except for isolated values in s, we will call the momenta (p, q) associated with these isolated s

values a null pair.

Now we begin the proof.

Proof of Lemma 2. Let’s separate B ∈ B into a multiple of identity (pure trace) and a

traceless part B ≡ tr (B) + B], for the reason that will be clear in the following. Then the

first step of our proof is to show that the representation of B] ∈ B with two-particle states2 on

a given mass shell is a loyal representation, i.e., the homomorphic mapping B] 7→ b](p1, p2) for

fixed p1, p2 is in fact an isomorphism. This can be achieved by showing that the vanishing of a

combination of representation matrices
∑
cαb

]
α(p1, p2) = 0 for fixed (p1, p2) leads to the vanishing

of the corresponding linear combination of generators,
∑
cαB

]
α = 0. This is true if we can show that∑

cαb
]
α(p1, p2) = 0 for fixed (p1, p2) leads to

∑
cαb

]
α(q) = 0 for all p, since the representation of

B] on the entire Fock space can be generated by its representation on one-particle space (as shown

in (12) for two-particle case), then the vanishing of
∑
cαb

]
α(p) for all p assures that

∑
cαB

]
α = 0.

Now, from the (13), and the fact that S(q1, q2, p1, p2) is non-singular for non-null pairs (q1, q2)

and (p1, p2) satisfying q1 + q2 = p1 + p2, we see that the condition
∑
cαb

]
α(p1, p2) = 0 for fixed

(p1, p2) yields
∑
cαb

]
α(q1, q2) = 0 for (q1, q2) subjected to the condition q1 + q2 = p1 + p2, which in

turn leads to
∑
cαb

]
α(q1) =

∑
cαb

]
α(q2) = 0, since b] is traceless3. This is not enough though, since∑

cαb
]
α(q1) = 0 only holds for those q1 satisfying q1 = p1+p2−q2. Since p1 and p2 are fixed, there is

only one DOF (namely q2) for q1, not enough to cover the whole mass shell. To enlarge the DOFs,

we note that
∑
cαb

]
α(p1, p2) already implies that

∑
cαb

]
α(p1) = 0. Together with

∑
cαb

]
α(q1), we

get
∑
cαb

]
α(p1, q1) = 0. Then the original condition that

∑
cαb

]
α(p1, p2) for both momenta p1 and

p2 fixed has been relaxed to the same equality but with only one momenta fixed. This releases an

additional DOF, so that
∑
cαb

]
α(q1) = 0 holds for q1 varying on a continuous 2-dimensional range

on the mass shell. Thus we reach the partial conclusion that
∑
cαb

]
α(p) = 0 constantly on the

mass shell, namely, the mapping from generators B] to hermitian matrices b](p1, p2) for fixed p1

and p2 is indeed an isomorphism. This finishes the first part of our proof.

The second part of the proof is to show that all traceless generators B] must be internal, and

form a finite dimensional Lie algebra.

The argument begins with the note that all traceless hermitian matrices b(p1, p2) for fixed

momenta, form a closed algebra B, homomorphic to the algebra of SU(N)⊗ SU(N), with N the

number of particle types of given mass. Thus B must be a direct sum of a compact semisimple

2We choose the two-particle states because we want to base our argument on the 2-2 scattering process, where

(all-most non-singularity) assumption of S-matrix in the condition of the theorem apply.
3This is the place where the tracelessness of B] works. Note that if we begin the proof with B directly (without

its trace subtracted), then with (12), the vanishing of
∑

cαbα(q1, q2) can not yield the vanishing of
∑

cαbα(q), but

give
∑

cαbα(q) is proportional to identity and odd in momentum q only.
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Lie algebra and an Abelian Lie algebra. In the next a few paragraphs, we show that all generators

B] commute with all Lorentz generators, for B] in the semisimple Lie algebra and in the Abelian

Lie algebra, respectively.

For the case of semisimple algebra, an arbitrary generator B]
α transforms under the Lorentz

transformation U(Λ) as

U(Λ)B]
αU
−1(Λ) =

∑
β

Dβ
α(Λ)B]

β, (14)

where Dβ
α(Λ) furnish a finite-dimensional representation of Lorentz group. Let’s show that this

representation can be made into a unitary representation. In fact, from the transformation of

structure constant of this semisimple algebra,

Cγαβ = Dα′
α(Λ)Dβ′

β(Λ)Dγ′
γ(Λ−1)Cγ

′

α′β′ ,

we can find

gαβ = Dα′
α(Λ)Dβ′

β(Λ)gα′β′ ,

where gαβ ≡ CγδαC
δ
γβ is the algebra metric. Since the algebra is semisimple, this metric is positive-

definite. Thus g−1/2D(Λ)g−1/2 indeed form a finite-dimensional unitary representation of Lorentz

group. However, since Lorentz group is non-compact, thus the only finite-dimensional representa-

tion is the trivial one. That is, all D(Λ) = 1. As a consequence, we see that B]
α commutes with

all Lorentz generators.

Then consider the Abelian algebra. In this case, consider any non-null pair (p, q) and go to the

frame in which p and q are aligned in z-direction. Then the commutator [P, [J,B]
α]] = 0 by Jacobi

identity:

[P, [J,B]
α]] + [J, [B]

α, P ]] + [B]
α, [P, J ]] = 0,

since we know that [B]
α, P ] = 0, and [J, P ] ∝ P , thus the last two terms on the l.h.s. vanish. That

is to say, [J,B]
α] must be in B. On the other hand, as an abelian generator, B]

α commutes with

all elements in B. Thus, we further have [B]
α, [J,B

]
α]] = 0. Now, consider the the matrix element

of this commutator between two-particle states |m,n〉, on which

J |m,n〉 = σ(m,n)|m,n〉, B]
α|m,n〉 = (b]α)mn|m,n〉,

where m,n denote the particle species on a given mass shell and run over a finite discrete range,

we get

0 = 〈m,n|[B]
α, [J,B

]
α]]|m,n〉 =

∑
m′,n′

(
σ(m′, n′)− σ(m,n)

)∣∣(b]α)mn,m′n′
∣∣2. (15)

Suppose that σ(m,n) does not share a same value σ, then there exists a pair (m,n), such that

σ(m,n) is the smallest one. Then the r.h.s. of the expression above is positive-definite, contradict-

ing the equality, unless all (b]α)mn,m′n′ vanishes. Thus we conclude that (b]α)mn,m′n′ must vanish

when σ(m,n) 6= σ(m′, n′), which is equivalent to the fact that [J,B]
α] = 0. Now we can arbitrarily

choose the non-null pair (p, q) to show that [Jµν , B
]
α] = 0.

Now we have demonstrate that any traceless symmetry generator B]
α commuting with momen-

tum operator also commutes with Lorentz generator, thus is internal.
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Finally let us deal with the trace part tr (B). From (13), we see immediately that tr b(q1, q2) =

tr b(p1, p2). Then by (12), we have further

tr b(q1) + tr b(q2) = tr b(p1) + tr b(p2), (16)

for any q1, q2 satisfying q1 + q2 = p1 + p2. That is to say, tr b must be a linear function in p, and

trB, in turn, must be a multiple of the momentum operator Pµ,

trB = aµPµ, (17)

and this finish the proof of Lemma 2.

2.3 Proof of the theorem

Now we are in the position to prove the theorem, with the two lemmas stated and proved above.

Firstly, as we have noted in the proof of Lemma 1, any generator A ∈ A has the following form:

A =

N∑
n=0

Aµ1···µn(p)
∂

∂pµ1
· · · ∂

∂pµn
,

by distribution assumption (Assumption 5). If N > 0, then the N -fold commutators between A

and Pµ can be easily evaluated to be

[Pµ1 , [Pµ2 , · · · [Pµn , A] · · · ]] = A
(N)
µ1···µN (p), (18)

which is still in A , and also commutes with Pµ. That is to say, this N -fold commutator is now in

B, where Lemma 2 applies. Thus A
(N)
µ1···µN (p) has the form of

A
(N)
µ1···µN (p) = aµµ1···µNP

µ + bµ1···µN .

On the other hand, let’s replace the outermost element Pµ1 in the N -fold commutator by PµP
µ.

The result vanishes according to (8):

[PµP
µ, [Pµ2 , · · · [Pµn , A] · · · ]] = aµµ1···µNP

µPµ1 + bµ1···µNP
µ1 = 0. (19)

This result is independent of the momentum on a mass shell, thus the vanishing of the term

linear in Pµ implies that bµ1···µN = 0, and the vanishing of the term quadratic in Pµ implies

that aµµ1µ2···µN = aµ1µµ2···µN . But a is totally symmetric in its indices, thus we conclude that

aµµ1µ2···µN = 0 for N > 1.

Thus there are only two nontrivial cases, N = 0 and N = 1. In the latter case, we have

A = A(1)
µ

∂

∂pµ
= aνµP

ν ∂

∂pµ
,

with aνµ antisymmetric. This is just the generator of Lorentz transformations. While in the

case N = 0, A does not contain p-derivative, and commutes with Pµ. Lemma 2 applies again,

indicating that A must be a momentum operator or a internal symmetry generator, or their linear

combinations. In conclusion, the generator A must be a sum of Poincaré generators and internal

symmetry generators. In the language of groups, the symmetry of S-matrix in a relativistic theory

must be a locally direct product of Poincaré group and a finite dimensional internal symmetry Lie

group. This finish the proof of the Colema-Mandula theorem.
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3 Remarks

The results of CM theorem is quite impressive, but its assumptions are rather technical. Now

we will show that these apparently complicated conditions are in fact quite critical, in the sense

that violating or relaxing of one of these conditions will in general breaks the conclusion of the

theorem. Let us now examine some of these conditions.

The first assumption, the Poincaré invariance, as we have seen, is very crucial in proving the

theorem, which is reflected not only in the spectrum structure of one-particle or multi-particle

states, as the infinite dimensional unitary representations of Poincaré group, but also in the key

feature of non-compactness of Poincaré group. With this in mind, we states a similar theorem

without a proof concerning a relativistic theory with massless particles only. In this case, the

space-time symmetry is enlarged to conformal group. In 4 dimensional case, the conformal group

is isomorphic to SO(4, 2), which contains Poincaré group as a subgroup, and is also noncompact.

Thus the “massless” edition of the CM theorem is, the symmetry of S-matrix is described by a

locally direct product of conformal group and finite dimensional internal symmetry Lie group.

But the theorem no longer holds if one tries to replace the Poincaré group by Galilean group,

since the latter is compact. So there is no non-relativistic edition of CM theorem, and in fact,

“counterexamples” exist in a non-relativistic theory. For instance, in the nonrelativistic theory

of nucleus, one can combine the space-time rotational symmetry SU(2)J together with isospin

symmetry SU(2)I into a larger simple group SU(4). Particles form “supermultiplets” under the

action of this group. One can also combine the “flavour” SU(3) group of quarks and rotational

group SU(2)J into a larger group SU(6) ([3], see also [2], Chp. 24, App. A).

3.1 Supersymmetric Extension

The CM theorem claimed that all symmetry tensorial generators other than Poincaré algebra

are actually space-time scalar. It says nothing about spinorial generators. From spin-statistic

relations, that means there are other possibilities besides Lie algebras consisting of commuting

generators, that is, the so-called graded Lie algebras, consisting of commuting and anticommuting

generators. This possible extension of the CM theorem is given by Haag,  Lopuszański and Sohnius

(HLS)[5], which states that besides Poincaré generators and scalar internal generator, there can

be spinorial anticommuting generators that acts as the supersymmetry of the theory. In addition,

the only possible spinorial generators are spin-12 operators.
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